Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Códigos Matriciais Unidimensionais e Bidimensionais

Débora Beatriz Claro Zanitti¹

Universidade Estadual Paulista (UNESP), Campus Experimental de São João da Boa Vista, SP Cintya Wink de Oliveira Benedito²

Universidade Estadual Paulista (UNESP), Campus Experimental de São João da Boa Vista, SP

1 Introdução

Um código corretor de erros é, em essência, um modo organizado de acrescentar algum dado adicional a cada informação que se queira transmitir ou armazenar e, que permita, ao recuperar a informação, detectar e corrigir erros, [1]. Códigos corretores de erros na forma matricial podem ser construídos utilizando códigos de paridade simples. Códigos obtidos desta forma podem ser aplicados em sistemas de comunicação e em sistemas de armazenamento de informação, como por exemplo, gravação magnética [2].

Nosso objetivo neste trabalho é apresentar um estudo sobre códigos matriciais unidimensionais e bidimensionais visando aplicá-los em correção de erros.

2 Códigos Matriciais

Considere o corpo finito $\mathbb{F}_2 = \{0,1\}$. Dizemos que $\mathcal{C} \subset \mathbb{F}_2^n$ é um (n;k) código linear sobre \mathbb{F}_2 se \mathcal{C} for um sub-espaço vetorial de dimensão k de \mathbb{F}_2^n . A dimensão k de \mathcal{C} é definida da maneira usual, como o número de elementos de uma base. E, o comprimento n do código é o comprimento de suas palavras-código, [3].

Um exemplo importante de códigos lineares binários são os códigos de paridade simples (n, n-1), onde cada palavra código consiste de n-1 bits de informação e um bit de verificação de paridade. Seja $u=(u_0,u_1,\cdots,u_{n-2})$ uma mensagem a ser codificada. Então um bit simples de paridade c é adicionado para formar a palavra código $v=(c,u_0,u_1,\cdots,u_{n-2})$. Este bit é simplesmente a soma módulo c0 dos c1 bits de informação, ou seja,

$$c = u_0 + u_1 + \dots + u_{n-2}.$$

Este tipo de código pode detectar qualquer número ímpar de erros na palavra-código. Um código matricial unidimensional é um código de paridade simples.

¹bia.zanitti@hotmail.com

 $^{^2}$ cintyawink@gmail.com

2

Exemplo 2.1. As matrizes G_1 e G_2 abaixo são matrizes geradoras de códigos matriciais de paridade simples nas linhas e nas colunas, respectivamente.

$$G_1 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \; ; \; G_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Agora, seja C_1 um código de paridade simples (n_1, k_1) e C_2 um código de paridade simples (n_2, k_2) . Um matricial bidimensional $(n_1n_2, (n_1 - 1)(n_2 - 1))$, consiste de códigos matriciais com paridade simples nas linhas e nas colunas. Este código possui n_1n_2 símbolos que podem ser obtidos por uma matriz retangular de n_1 colunas e n_2 linhas, em que cada linha é uma palavra-código em C_1 e cada coluna é uma palavra-código em C_2 . Códigos matriciais bidimensionais tem a capacidade de correção de 1 erro e de detecção de até 3 erros.

Exemplo 2.2. Considere a seguinte palavra-código do código matricial bidimensional (25, 16).

 0
 1
 0
 1
 0

 1
 1
 0
 1
 1

 0
 0
 0
 0
 0

 1
 1
 1
 1
 0

 0
 1
 1
 1
 1

As matrizes abaixo demonstram exemplos de detecção de 1, 2 e 3 erros, respectivamente. Observe que no caso de 1 erro, as duas equações de paridade, de linha e coluna, que verificam o dígito errado, falham e por isto torna-se possível localizá-lo e corrigi-lo.

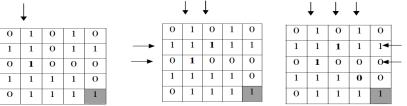


Figura 1: 1 erro; 2 erros; 3 erros.

Já no caso de dois erros, temos que quatro equações de paridade falham e não é possível a localização dos dois erros com exatidão. Para três erros ou mais nem sempre é possível identificar a presença de todos eles.

Referências

- [1] H. Abramo. Códigos Corretores de Erros. (Coleção Matemática Universitária), Rio de Janeiro, 2002.
- [2] W. P. S. Guimarães. Códigos corretores de erros para gravação magnética. Dissertação de Mestrado em Engenharia Elétrica, UFPE, 2003.
- [3] W. E. Ryan, S. Lin. *Channel codes: Classical and modern*. Cambridge University Press, 2009.

010089-2 © 2018 SBMAC