
ON THE DYNAMICS OF SIMULTANEOUS SPREADING OF TWO-STRAIN

DENGUE SEROTYPES
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Abstract— We discuss an epidemic model for dengue fever infection by considering the simultaneous spread

of two serotypes throughout a shared non-naive host population and analyze the dynamics of the spreading for

each serotype. The susceptible population is divided into two different susceptible classes: a naive population

for those individuals that have never been exposed to the virus and a cross-imune population whose individuals

have been exposed to one of the serotypes becoming immune to it but susceptible to its heterelogous. When the

cross-immune populations are different an asymmetry in the susceptible host population is introduced and the

dynamics of strains spreading is investigated as a function of this asymmetry. We show that the asymmetry in

initial condition expressed by differences on the size of cross-imune population induces a feedback mechanism

which produces an alternate pattern in epidemics with different dominant serotypes. We found that if the

susceptible populations are symmetric both serotypes coexist during the epidemics but when the asymmetry

becomes large two epidemics could be distinguished with a predominant serotypes in each one.
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1 Introduction

Dengue fever is an infectious disease caused by
viruses which could evolve to a severe infection
and, depending on the form that it manifest it-
self could be classified as silent infection, dengue
fever, dengue hemorrhagic fever, dengue shock
syndrome. It is an important public health prob-
lem since this disease is endemic in more than
100 countries affecting more than 2.5 billion peo-
ple living in tropical areas (Gluber, 2002; Feng
and Velasco-Hernandez, 1997; Recker et al., 2009;
Adams et al., 2006). The main transmitting agent
are the mosquitoes Aedes aegypti and Aedes al-
bopictus. The mean lifetime of the adult females
is about 45 days and once infected by the virus
they will remain infected until the end of their
life. The transmission cycle occurs from an in-
fected person to the susceptible mosquito which
becomes infected and from infected mosquitoes
to human susceptible individuals. The Dengue
fever can be caused by each one of the four dif-
ferent virus serotypes known as DEN-I, DEN-

II, DEN-III and DEN-IV. Once a person is in-
fected by one of the serotypes will never be rein-
fected by the same serotype again but will remain
susceptible to the heterologous strain after a pe-
riod of cross-immunity. Moreover and additional
immunological response to reinfection known as
antibody-dependent enhancement (ADE) which
influences the susceptibility of the hosts to an het-
erologous serotype has also been pointed as an

important aspect for reinfection patterns studies
(Gluber, 2002; Recker et al., 2009; Wearing and
Rohani, 2006).

The problem of multiple serotypes spreading
in a population have been addressed in differ-
ent ways. Nurani, Soewono and Sidarto (Nuraini
et al., 2007) introduced the possibility of evolu-
tion to Dengue Haemorragic Fever in a determin-
istic model for two-strain serotypes. Derouich,
Boutayeb and Twizell (Derouich et al., 2003) in-
vestigated a sucession of two epidemics caused
by two different viruses using ordinary differen-
tial equations for hosts and vectors population.
Esteva and Vargas (Esteva and Vargas, 2003) in-
vestigated a non-linear system of differential equa-
tions to model the coexistence of two serotypes in
a given area taking into account the ADE effect
expressing the idea that primary infection by a
given serotype changes the probability of being
infected by a heterologous serotype. They con-
centrated in the analysis of stability of the equi-
libruim points and established the conditions for
the coexistence of two different serotypes in the
same population based on the indirect interaction
between these serotypes through the immunolog-
ical memory expressed by the ADE. Chicaki and
Ishikawa (Chicaki and Ishikawa, 2009) presented
a dengue model considering sequential infections
for different serotypes to simulate dengue trans-
mission in Thailand. Their model takes into ac-
count sazonality effects in vector population, exis-
tence of unapparent cases, ADE and variability in
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the transmission probabilities for each serotype.
The mathematical model was feed with empiri-
cal parameters obtained from the reports of the
Queen Sirikit National Institute of Child Health
(QSNICH) which summarized dengue fever oc-
currences in 1973-1999. They claim that all the
four serotypes were found and that the dominant
serotype change in time irregularly. By consider-
ing the relative frequency of serotypes occurrences
they proposed that the dengue transmission prob-
ability ranges from λ to 1.5λ, with λ being the
lower probability transmission from a vector to a
host.

In a recent work Castanha et al (Castanha
et al., 2013) performed a study about anti-dengue
serotype-specific in a hyperendemic setting in
northearstern of Brazil, using data on dengue re-
ported cases collected during the year 2005. They
found that number of exposed individuals to each
one of the 3 circulating serotypes in Brazil are dis-
tributed in a non-uniform way. As a consequence,
in a case of simultaneous circulation of different
serotypes there will be a different set of available
susceptibles to be infected an a different pattern
of epidemics could emerge.

In empirical investigation is observed multi-
annual cycles in the disease incidence and dif-
ferent hypotheses to explain the alternance in
the dominant serotypes have been discussed in-
cluding ADE effects, heterogeneity in virus viru-
lence, cross-immunity period and seazonal varia-
tion (Adams et al., 2006). However, none of them
(solely or in combinational) provides a clear expla-
nation of the observed empirical patterns. In this
work we explore the observed heterogeneity in pre-
viously exposed population by simulating a two-
strain spread of the disease in a non-naive host
population and analyze the spreading dynamics
for each serotype. Instead use a completely sus-
ceptible host population as an initial condition the
population is divided in two different susceptible
classes: a naive population for those individuals
that have never been exposed to the virus and
a cross-imune population whose individuals have
been exposed to one of the serotypes becoming
immune to it but susceptible to its heterelogous.
Furthermore, the cross-immune populations may
be different introducing an asymmetry in the sus-
ceptible host population, then the dynamics of
spreading could be investigated as a function of
this asymmetry. We show that the asymmetry in
initial condition expressed by differences on the
size of cross-imune population induces a feedback
mechanism which produces an alternate pattern
in epidemics with different dominant serotypes.

In the next section we present the com-
partmental model for simultaneuous two-strain
serotypes spreading in a population including the
cross-immunity state observed for dengue fever as
a set of differential ordinary equations. We also

propose a measure of the asymmetry for the ini-
tial conditions. In section 3 we present the results
of the simulation for different asymetries and dis-
cuss the effect on the spreading dynamics.

2 The mathematical model

The mathematical model is based on the tra-
ditional susceptible-infectious-recovered classes
for the human (host) and susceptible-infectious
classes for the mosquito (vector). Let us con-
sider the populations of hosts and vectors of sizes
H and V and assume that the number of indi-
viduals of each specie is constant. Compartmen-
tal modeling divides the populations into cate-
gories or compartments according to their rela-
tive state of health and defines flow rates from a
compartment to another taking into account the
characteristics of the disease, the habitude of vec-
tor´s transmission among other features. The host
population is divided into classes being the most
common the susceptible (S), infected (I) and re-
moved (R) classes. For the dengue fever is ob-
served that after recovering of a infection with
given serotype a host becomes temporarily im-
mune to all serotypes. Moreover, after a given
period of immunity it becomes susceptible to the
other serotypes. So two additional compartments
related to the total and partial cross immunity
should be included. The double-strain model is
represented in Figure 1 by using a state flow di-
agram for the human host where the boxes rep-
resent the disease related stages and the arrows
indicate the transition rates.

Figure 1: Transmission diagram for the two-strain
epidemic model for human hosts.

To identify all the possible states each
serotype is labelled as strain 1 and strain 2 and
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the states associated to the hosts have two in-
dexes built with these labels ((i, j), i, j = 0, 1, 2)
where the label 0 is associated with no infection.
The complete set of states for the host popula-
tion is the following: Sh(0, 0) for naive individ-
uals, Ih(i, 0) for those infected by the strain i
only, Rh(i, 0) for those recovered of infection of
strain i that are temporarily immune to all strains,
Sh(i, 0) for those who are imune to the strain i
only, Ih(i, j) for hosts infected by the strain j after
being infected by strain i and Rh = (Rh(1, 2) +
Rh(2, 1)) for those are recovered from infections
by strains 1 and 2. For a closed populations, the
constant size host populationH is divided into ten
classes being H = S(0, 0) + Ih(1, 0) + Ih(2, 0) +
Rh(1, 0)+Rh(2, 0)+Sh(1, 0)+Sh(2, 0)+ I(1, 2)+
Ih(2, 1) +Rh.

The ordinary differential equations for the two
strain epidemiological model for a host population
without death and births are given below and the
dynamics of the model is described as follows. The
symbols Iv(i) set the population of infected vec-
tor with strain i and Sv(0) the susceptible vector
population.























































































































































dSh(0,0)
dt

= −(λ1Iv(1) + λ2Iv(2))
Sh(0,0)

V

dIh(1,0)
dt

= λ1Iv(1)
Sh(0,0)

V
− γIh(1, 0)

dIh(2,0)
dt

= λ2Iv(2)
Sh(0,0)

V
− γIh(2, 0)

dRh(1,0)
dt

= γIh(1, 0)− δRh(1, 0)

dRh(2,0)
dt

= γIh(2, 0)− δRh(2, 0)

dSh(1,0)
dt

= σRh(1, 0)− φλ2Iv(2)
Sh(1,0)

V

dSh(2,0)
dt

= σRh(2, 0)− φλ1Iv(1)
Sh(2,0)

V

dIh(1,2)
dt

= φλ2Iv(2)
Sh(1,0)

V
− γIh(1, 2)

dIh(2,1)
dt

= φλ1Iv(1)
Sh(2,0)

V
− γIh(2, 1)

dRh

dt
= γ(Ih(1, 2) + Ih(2, 1))

Susceptibles hosts Sh(0, 0) to both strains can
be infected by the strain one or strain two with a
rate λi) (i = 1 or 2) when the infection is acquired
by an individual in its first infection (Ih(i, 0)).
The infected hosts recover from this primary in-
fection with a recovery rate γ and get full and
life-long immunity against the strain that they
were exposed to, and also a short period of tem-
porary cross-immunity against the other strain
(Rh(i, 0)). After the cross-immunity period they
become susceptible to the second infection by a
different strain. The susceptible host to the strain
j (Sh(i, 0)) can be infected with a rate λj and gets

the secondary infection. Then, the infected host
Ih(i, j) recovers with recovery rate γ and become
immune against all strains.

The vector individuals are assumed to be in-
fected by only one serotype during its entire life.
Moreover, as the mean life time of a vector is small
it is assumed a birth and a death rate µv in order
to keep the total population constant togheter a
renewable number of susceptible individuals. This
mean that infected vectors are removed from the
system with a rate µv and new susceptible indi-
viduals are inserted at the same rate in order to
satisfy the constraint V = Iv(1) + Iv(2) + Sv(0).

Following the empirical observations of Chi-
caki (Chicaki and Ishikawa, 2009) and Castanha
(Castanha et al., 2013) about the serotype fre-
quency occurrences we assume an asymmetry in
the initial susceptible host population and solve
the model using as initial condition a naive pop-
ulation Sh(0, 0) < H, and cross-immune popu-
lations Sh(i, 0) ≥ 0 togheter an asymmetry ex-
pressed by the condition Sh(1, 0) 6= Sh(2, 0).

To quantify the asymmetry let us consider
a host population of size H whose a fraction f
of individuals have been previously exposed to
any of the strains 1 or 2 and those infected in-
dividuals are actually in the cross-immunity pe-
riod. The host population is exposed again to
both strains which could spread throughout the
respective susceptible hosts. While a number of
hosts (1 − f)H is susceptible to both serotypes a
number fH = Sh(1, 0) + Sh(2, 0) of hosts is sus-
ceptible to strain 1 or to strain 2. Let us define an
asymmetry factor in the susceptible population as

χ =
|Sh(1, 0)− Sh(2, 0)|

(Sh(1, 0) + Sh(2, 0))
.

If the number of susceptible individuals to
each serotype are equal then χ = 0 and the to-
tal susceptible population is symmetric. On the
other hand χ = 1 means that the population has
been exposed to one of the serotypes, being com-
pletely susceptible to the heterologous one.

3 Results and Discussion

The model have been simulated for different val-
ues of asymmetry and infection rates λi. In all the
simulations the infection rates λi are the same for
both strains but the ADE effect could be taken
into account for the reinfection cases assuming
φ > 1.0. Table 1 summarizes the complete set
of parameters as well as the range they could as-
sume in the simulation.

Initially the total population of vectors is as-
sumed to be susceptible and a infection starts in-
troducing a small number of human host individu-
als (chosen from the naive population) infected by
each serotype. In this work it has been assumed
an initial infection of 0.005 per cent of individuals
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Table 1: Range of parameters that may be used
in the simulation.
Parameter Symbol Value

Host population H 105

Vector Population V 105

Transmission rate Vector-
Host

λ1,2 [0, 1]

Transmission rate Host-
Vector

λV [0, 1]

Recovering period γ−1 [0, 1]
Cross immunity period σ−1 [0, 1]
ADE parameter φ ≥ 1.0
Birth/death rate for Vector
population

µv [0, 1]

for each serotype, i.e., both strains could spread
simultaneously throughout the available popula-
tions.

Figure 2 shows the fraction of hosts infected
by any of the strains for f = 0.30, λ1 = 0.20,
φ = 1.0 and different values of asymmetry factor
χ. Without loss of generality, for the asymmetric
case it is assumed that Sh(2, 0) ≥ Sh(1, 0). For
low asymmetry the system ehxibits the typical be-
haviuor of a SIR model since both strains spreads
in the same way and the epidemics due to each
particular serotype are indistinguishable. When
the asymmetry factor is increased the behaviour
is quite different since a secondary epidemic peak
develops. The first peak is associated to a primary
infection while secondary peak could be attributed
to reinfection by a different strain.
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Figure 2: Fraction of infected hosts regardless the
strain for different values of asymmetry χ.

Although the Figure 2 provides an overview
on the dynamics of the system a closer look at the
details of the dynamics for each strain could be
useful to understand the rising of the secondary
peak and its relations with the asymmetry fac-
tor. In the Figure 3 the curves Ih(i, j) correspond
to the fraction of hosts infected by each serotype
at each time step while the curve Ih sets for the
summation of infected individuals. For high asym-

metry (χ = 1.0), in the primary infection both
strains spread simultaneously throughout a shared
naive host population but the newly introduced
serotype spreads also through the cross-immune
population, i.e., the newly introduced serotype
spreads over two populations generating a feed-
back process due the interaction between these
population mediated by the transmission vectors.
It could be seen at Fig.3(a) whose peaks of pri-
mary and secondary infection by serotype 1 have
the same locus. Clearly the locus of primary infec-
tions taking place in the naive population should
coincide since the force infection are the same for
both serotype, but the number of infected hosts
by serotype 2 is low since the available susceptible
population is low. The infection period is followed
by a cross immunity period in which the recov-
ered population can not be infected by any strain.
After the recovering of the primary infection by
the strain i and resting for a period as immune
the individuals become available to infection by
the strain j and a secondary epidemics with the
heterologous serotype takes place. In this case,
a higher peak is observed for the serotype whose
peak was low in the primary infection. When the
asymmetry factor is lowered both strains spreads
through two populations and the competition be-
tween the serotypes through the feedback process
is continuously supressed, disappering for χ = 0.

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

 

 

In
fe

cte
d 

Ho
sts

Time

 Ih(1,0)
 Ih(2,0)
 Ih(1,2)
 Ih(2,1)
 Ih

(a)

 Ih(1,0)
 Ih(2,0)
 Ih(1,2)
 Ih(2,1)
 Ih

(b)

 
 

In
fe

cte
d 

Ho
sts

Time

Figure 3: Infected hosts by serotype i for different
values of asymmetry χ.

Let us analyze the feedback process taking
place during the epidemics a little more closer.
Figure 4 shows the fraction of susceptible popula-
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tion to strain j (Sh(i, 0)). In this case the major
part of cross-immune population is that previously
exposed to strain i = 2 being susceptible to strain
j = 1. At early times the fraction of susceptible
population to strain 1 decreases quickly since the
individuals are infected by strain 1 which spreads
over populations Sh(2, 0) and Sh(0, 0), infecting
the most of hosts and, as consequence, also the
vectors. On the hand the strain 2 spreads over a
small host population and the spreading is ham-
pered by low number of available susceptible vec-
tors, remaining in a small level in the system. For
intermediary times the population infected by one
serotype recovers and become susceptible to its
heterologous. In this situation the population sus-
ceptible to strain 1 becomes larger than for strain
2 and a secondary epidemics takes place with a
different dominant serotype.

It is clear in the Fig.3 that fraction of in-
fected host vanishes for long time. In standard
SIR models it happens since there are no hosts
to be infected anymore. However in the case
of two different serotypes spreading simultane-
ously, the competition between the strains give
rise to an equilibruim point free of infection but
with a nonvanishing fraction of suscetible indi-
viduals as illustrated in the Fig.4 and previosly
investigated by Derouich,Boutayeb and Twizell
(Derouich et al., 2003). In this figure could be
seen that the majority of individual gets infected
by the two strains during the epidemics, but a
small fraction remains susceptible to a serotype
and a new epidemics may develops depending on
the level of susceptible population and the new
exposition to the virus.

4 Conclusion

We discussed the dynamics of an epidemic model
for dengue fever infection by considering the si-
multaneous spreading of two serotypes through-
out a shared non-naive host population in which a
cross-immune population gives rise to an asymme-
try in the susceptible population. We have used
an asymmetry in the initial condition expressed
by the difference between cross-imune population
which induces a feedback mechanism that gives
rise to an alternate pattern in epidemics with dif-
ferent dominant serotypes at the primary and sec-
ondary epidemics. Moreover, it was found that
if the susceptible populations are symmetric the
serotypes coexist during the epidemics but if the
asymmetry becomes large two epidemics could be
distinguished with a predominant serotype in each
one. Furthermore, when analyzing the multian-
nual alternance in the dominant serotypes dur-
ing the epidemics the asysmmetry in the initial
susceptible population should also taken into ac-
count together the seazonal, environmental and
immunological features.
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Figure 4: Susceptible hosts to serotype 1
(Sh(1, 0)), serotype 2 (Sh(2, 0)) and both
serotypes (Sh(0, 0)) for different values of asym-
metry in the initial condition.
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