Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Otimização de embalagens com o uso do Calculo Diferencial e Integral

Wendy Fernanda de Almeida¹ Licenciatura em Matematica, UNESP, Presidente Prudente, SP Cristiane Nespoli² Departamento de Matematica, UNESP, Presidente Prudente, SP

1 Introdução

Com o aumento do consumo de produtos industrializados, as empresas buscam conquistar vantagens competitivas nos menores detalhes. Esse é o caso, por exemplo, do setor de engenharia de produção, mais especificamente, do transporte e estocagem de produtos. Os objetos avaliados neste estudo são as embalagens paralelepipédicas e cilíndricas. Usando o Cálculo Diferencial e Integral são calculadas então as proporções ideais entre as medidas dessas embalagens de forma a minimizar sua área superficial mantendo seu volume.

2 Embalagem da caixa ideal

Seja $V(x_1, x_2, x_3) = x_1.x_2.x_3cm^3$ o volume e $A(x_1, x_2, x_3) = 2(x_1.x_2 + x_1.x_3 + x_2.x_3)cm^2$ a área. Fixamos o volume e uma das variáveis, substituindo x_1 em função de x_3 e x_2 e obtemos $x_1 = \frac{V}{x_2.x_3}$. Sem perda de generalidade, fixamos x_2 , e calculamos os candidatos a máximos e mínimos em A variando x_3 :

$$A(x_3) = 2(\frac{V}{x_3} + \frac{V}{x_2} + x_2.x_3)cm^2$$

Assim, os candidatos a máximos e mínimos serão da forma:

$$x_3^2 = \frac{V}{x_2}$$

que não é diferente de dizer $x_3 = x_1$, substituindo V pelas variáveis.

 $^{^{1}}$ wendy_f da@hotmail.com

²cnespoli@fct.unesp.br

2

3 Embalagem cilíndrica ideal

Seja $V_1(H,R) = 2\pi H R^2 cm^3$ como o volume do cilindro que se pretende otimizar e $A_1(R,H) = 2\pi R H + 2\pi R^2 cm^2$ sua área superficial, ambas em função da medida da altura H e do raio R, a busca pelos candidatos a máximos ou minimos fornece:

$$\frac{H}{R} = 2$$

Ou seja, o diâmetro da base circular deve ser igual a altura do cilindro.

Desta forma, considerando que as bases são feitas a partir de cortes em chapas, temos que considerar a perda do material restante de forma que este seja o menor possível. Neste sentido, estudamos os casos onde foram feitos cortes das bases em formas retangulares e hexagonais, destas, obtemos as proporções ideais:

Chapa retangular:

$$\frac{H}{R} = \frac{8}{\pi} \simeq 2,55$$

Chapa hexagonal:

$$\frac{H}{R} = \frac{2\sqrt{3}}{\pi} \simeq 2,21$$

Assim, para cada tipo de corte, essas razões vão conseguir manter o volume inicial da embalagem, visando o menor desperdicio de material possivel em cada caso.

4 Conclusões

Conforme os resultados apresentados, podemos observar o importante papel da matemática, aqui associada à economia de materiais, bem como à preservação do meio ambiente.

Referências

- [1] S. A. O. Baccarin; Santos, R. C. . Embalagens. Revista do Professor de Matemática , v. 60, p. 10-12, 2006.
- [2] V. A. Botta. Embalagens e RPM nas aulas de Cálculo. Revista do Professor de Matemática, v. 81, p. 19 20, 2013.
- [3] H. L. Guidorizzi, Um curso de Calculo, volume 1, Livro LTC, 2001.