Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Modelagem das equações telegráficas presa-predador em meio fluido

Juniormar Organista¹ Eliandro Rodrigues Cirilo² Neyva Maria Lopes Romeiro³ Paulo Laerte Natti⁴ Centro de Ciências Exatas, Departamento de Matemática, UEL, Londrina, PR

1 Introdução

Muitos problemas que abordam a interação entre populações são modelados por meio de EDP's, tais equações são mais conhecidas como Equações Presa-Predador. Neste trabalho nosso objetivo é explicitar um modelo aprimorado das Equações Predador-Presa que contemple o fenômeno de retardo e que as populações estejam sob a influência de um fluido circundante. O retardo é deduzido da equação telegráfica e a influência do fluido circundante vem da dinâmica dos fluidos. Da interações entre os modelos hidrodinâmico e Predador-Presa surge o modelo Reativo - Difusivo - Telegráfico.

2 Modelo matemático

O modelo em estudo é dado pelas equações: Navier-Stokes, pressão e presa/predador a seguir. Os termos fontes da presa e do predador são, respectivamente, $F_1 = a_1S_1 - b_1S_1^2 - c_1S_1S_2$ e $F_2 = -a_2S_2 + c_2S_1S_2$. A variável t é o tempo e x o espaço.

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(uu \right) = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\mu}{\rho} \frac{\partial^2 u}{\partial x^2}$$
(1)

$$\frac{1}{\rho}\frac{\partial^2 p}{\partial x^2} = -\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial x}\right) - \frac{\partial^2}{\partial x^2}\left(uu\right) + \frac{\mu}{\rho}\frac{\partial^2}{\partial x^2}\left(\frac{\partial u}{\partial x}\right)$$
(2)

$$\tau_{j}\frac{\partial^{2}S_{j}}{\partial t^{2}} + \tau_{j}\frac{\partial}{\partial t}\left(\frac{\partial}{\partial x}\left(S_{j}u\right)\right) + \left[1 - \tau_{j}\frac{\partial}{\partial S_{j}}F_{j}\left(S_{1},S_{2}\right)\right]\frac{\partial S_{j}}{\partial t} = -\frac{\partial}{\partial x}\left(S_{j}u\right) + D_{j}\frac{\partial^{2}S_{j}}{\partial x^{2}} + F_{j}\left(S_{1},S_{2}\right), \ j \in \{1,2\}$$
(3)

¹juniormarorganista@gmail.com

 $^{^{2}}$ ercirilo@uel.br

 $^{^{3}}$ nromeiro@uel.br

⁴plnatti@uel.br

 $\mathbf{2}$

São dadas ainda as constantes a_j , b_j , c_j , D_j , e as populações presa/predador $S_j(x,t)$, com $j \in \{1,2\}$. Os termos τ_1 e τ_2 são parâmetros de relaxação da presa e predador, respectivamente. Finalmente, u é a velocidade, p a pressão, ρ a densidade e μ a viscosidade do fluido.

3 Modelo numérico preliminar

Consideremos a malha discreta dada pelos pontos $x_i = (i-1)\Delta x, i = 1, ..., n$ e $t_k = (k-1)\Delta t, k = 1, ..., m$. No nível de tempo k+1 temos abaixo o esboço da malha, e em quais pontos são calculados S_j , $u \in p$. No modelo hidrodinâmico, os campos

de velocidade e pressão serão calculados via o método MAC [1]. Nas equações em (3), fazendo-se aproximações por diferenças finitas em $|_P^{k+1}$ dos tipos: central em $\frac{\partial^2 S_j}{\partial x^2}$, retroativa em $\frac{\partial^2 S_j}{\partial t^2}$, $\frac{\partial S_j}{\partial t}$, $\frac{\partial}{\partial t} \left(\frac{\partial}{\partial x} \left(S_j u \right) \right)$ e FOU em $\frac{\partial}{\partial x} \left(S_j u \right)$, para $j \in \{1, 2\}$, resulta:

$$\Lambda_{j}(\tau_{j}, D_{j}, \Delta x, \Delta t, u) S_{j_{E,k+1}} + \Phi_{j}(a_{j}, b_{j}, \tau_{j}, D_{j}, \Delta x, \Delta t, u, S_{j}) S_{j_{P,k+1}} + \Upsilon_{j}(\tau_{j}, D_{j}, \Delta x, \Delta t, u) S_{j_{W,k+1}} = \Gamma_{1}(a_{j}, b_{j}, c_{j}, \tau_{j}, \Delta x, \Delta t, u, S_{1}, S_{2}), \ j \in \{1, 2\}$$
(4)

4 Discussões

Sabemos que o esquema em diferenças finitas é consistente, e o modelo numérico está sendo implementado em Gfortran. Nossa expectativa é quantificar e discutir quanto as populações S_1 e S_2 são afetadas pela interação com o fluido.

Agradecimentos

Agradecimentos a CAPES pelo apoio financeiro fornecido através da bolsa.

Referências

- A. N. D. Barba, Estudo e implementação de esquemas upwind na resolução de um modelo de dinâmica dos fluidos computacional em coordenadas generalizadas, Dissertação de Mestrado em Matemática Aplicada, UEL, (2015).
- [2] V. Mendez, S. Fedotov and W. Horsthemke, Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities, Springer Series in Synergetics, Cap. 2, (2010).