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1 Introduction

The class of I-graphs was introduced in the Foster Census [2] as a natural generalization
of the so called [6] generalized Petersen graphs and has attracted the attention of many
graph theorists. In our work we investigate the I-graphs under an spectral approach,
which, as far as we concern, is not known.

The adjacency matriz A(G) = [a;;] of an arbitrary simple graph G whose vertices are
T1,T2,...,Ty, is the n x n matrix where a;; = 1, if there is an edge joining z; and x;, and
a;j = 0 otherwise. The characteristic polynomial of G is that of A(G). An eigenvalue of
(G is any root of its characteristic polynomial. They are all real numbers. The spectrum
of GG is the set of its eigenvalues together with their multiplicities.

In our work, we completely determine the spectrum of an I-graph by using known
properties of circulant and circulant block matrices.

2 Main result

Let fix n,j,k € N withn > 3,1 < j,k < § and j < k. The I-graph I(n,j, k) is the
graph with vertex set V(I(n,j,k)) = {a;,b;;0 < i < n —1} and edge set E(I(n,j,k)) =
{{ai,aivj}, {ai, bi}, {bi, bisx}; 0 < i < n— 1}, where addition is performed modulo n.

We assume j < k since I(n,j,k) = I(n,k,j). The Petersen graph is 1(5,1,2). The
class of I-graphs contains the well known class of G(n,k) = I(n, 1, k), the so called ( [6])
generalized Petersen graphs, introduced in [3].

We denote by A(n,j) the subgraph of I(n, j, k) formed with the vertices {a;;0 < i <
n — 1} and edges {{aj,ai+;};0 < i < n —1}. The subgraph of I(n,j, k) with vertices
{bi;0 < i < n—1} and edges {{bi,b;11};0 < i < n — 1} will be denoted B(n,k). We
denote A™ = A(A(n,j)) and B"* = A(B(n, k)).

A square matrix in which each row (after the first) has the elements of the previous
row shifted cyclically one place right, is called a circulant matrix. We denote it as M =
cire(mo,my, ..., Mp—1).
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Lemma 2.1. A™ = cire(0,...,0,1,0,...,0,1, 0,...,0 ) and its eigenvalues are oy =
2mjl , ) . onT
2cos(%), 0 <1l <n-—1, with corresponding eigenvectors v; = (1,{1,521, ...,f(" 1)l) ,
0 <l<n—1, where & is a primitive n-root of unity.
k entries k—1 entries

— —
Analogously, B"™ = cire( 0,...,0 ,1,0,...,0,1, 0,...,0 ), with eigenvalues B; = 2005(2”7“),

0 <1l <n-—1 and corresponding eigenvectors v; = (1,§l,£2l, ...,f(”_l)l)T, 0<I<n—1.

A(I(n,j,k)) can be described as a circulant-block matrix and we establish our main
result:

Theorem 2.1. The eigenvalues of 1(n,j, k) are

2mj 2 omj 2 2
)\l:cos<Fjl)—}—cos(m)i\/(COS(”)—ms(m)) +1, 0<I<n—1.
n n n n

The eigenvalues of I(n, j, k) are exactly the solutions of the equations (A — 5))(A—ay) =1,
foreachl, 0 <l <n-—1.

After our Theorem 2.1, we are able to prove known structural properties of I-graphs,
such as conectedness and bipartiteness, by using ”pure” spectral techniques.
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