Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Estudo Comparativo Sobre Métodos Iterativos de Resolução de Sistemas Lineares de Grande Porte

Luís Ricardo Fernandes¹
CEFET-MG, Belo Horizonte, MG
Rodrigo Tomás Nogueira Cardoso²
Departamento de Física e Matemática, CEFET-MG, Belo Horizonte, MG
Carlos Magno Martins Cosme³
Departamento de Física e Matemática, CEFET-MG, Belo Horizonte, MG

1 Introdução

Neste trabalho serão analisados três métodos iterativos para resolução de sistemas lineares de grande porte: CMRH, GMRES e LCD. Os sistemas são do tipo $Ax = \mathbf{b}$, sendo $A \in \mathbb{R}^{n \times n}$ e $\mathbf{b} \in \mathbb{R}^n$. Os métodos GMRES [3] e CMRH são baseados em espaços de Krylov. Uma outra versão do método CMRH que inclui um processo de sobrearmazenamento (CMRH-OVER) [2] também será abordado. O método LCD [1] é baseado em vetores de direções conjugadas.

2 Espaços de Krylov e Vetores de Direções Conjugadas

Seja $A \in \mathbb{R}^{n \times n}$ e $\mathbf{r_0} \in \mathbb{R}^n$, chama-se o espaço $\mathcal{K}_k(A, \mathbf{r_0}) = \{\mathbf{r_0}, A\mathbf{r_0}, A^2\mathbf{r_0}, \cdots, A^{k-1}\mathbf{r_0}\}$ de espaço de Krylov de ordem k. Os métodos GMRES, CMRH e CMRH-OVER têm como base esses espaços. Enquanto o GMRES utiliza o método de Arnoldi, através do processo de ortogonalização de Gram-Schindt, para construir uma base ortonormal para \mathcal{K}_k , o método CMRH utiliza o processo de Hessenberg via fatoração LU. Essa é a principal diferença entre os dois métodos. Em cada caso é definido um processo iterativo dado por $\mathbf{x}_k = \mathbf{x_0} + \mathbf{z_k}$, sendo $\mathbf{z_k} \in \mathcal{K}_k$ escolhido de forma a minimizar o erro de aproximação. Como a dimensão deste espaço pode ser grande, aplica-se um processo de reinicialização sendo que, após k_{max} iterações, a aproximação inicial passa a ser a última solução encontrada. O CMRH-OVER consiste em uma adaptação do método CMRH, que armazena na própria matriz A os vetores que formam a base de \mathcal{K}_k . Devido a isto, o CMRH não utiliza o processo de reinicialização.

Os vetotes p_1, p_2, \dots, p_n são chamados de direções conjugadas à esquerda de uma matriz real A não singular se: $p_i^T A p_j = 0 \ \forall \ i < j \ e \ p_i^T A p_i \neq 0 \ \forall \ i$. O método LCD consiste

 $^{^{1}}$ lrfee2009@hotmail.com

²rodrigo@des.cefetmg.br

³cmagnomc@des.cefetmg.br

2

basicamente em encontrar um conjunto de vetores de direções conjugadas à esquerda de A, que formam uma base do espaço vetorial no qual a solução exata $\boldsymbol{x}^* = A^{-1}\boldsymbol{b}$ pode ser obtida através de uma combinação linear dos vetores dessa base. Este método também utiliza o processo de reinicialização.

3 Experimentos numéricos

Para comparação dos métodos, utilizou-se dois diferentes tipos de matrizes. Em todos os experimentos, tem-se aproximação inicial $x_0 = 0$ e tolerância da norma do erro $tol = 10^{-14}$. No primeiro caso, a matriz de Riemann é definida por: A(i,j) = i, se i + 1 divide j + 1 e A(i,j) = -1, caso contrário. A construção desta matriz garante que não seja simétrica. Neste caso, tem-se n = 1000 e kmax = 100. No segundo, tem-se a matriz definida por A(i,j) = 1 se i = j; $A(i,j) = sgn(j-i)\varepsilon^k$ se $j = 1 \pm k$, para k = 1,2,3; A(i,j) = 0 caso contrário. No experimento realizado, adotou-se $\varepsilon = 1.1$, n = 100 e diferentes valores para kmax.

Para o primeiro exemplo, a convergência da norma residual é bem similar em todos os métodos, sendo necessárias aproximadamente 200 iterações para encontrar a solução aproximada do sistema Ax = b. No segundo exemplo, o método CMRH-OVER converge com 98 iterações. Os métodos CMRH e GMRES convergem apenas quando $kmax \geq 94$ e $kmax \geq 95$ respectivamente, porém utilizando mais iterações que o CMRH-OVER. O método LCD não converge para esse tipo de matriz. Além disso, o método CMRH-OVER utilizou menos espaço de memória que os outros métodos, como esperado, uma vez que este método armazena os vetores da base na própria matriz A.

Esses exemplos mostram que a estrutura da matriz é condicionante para a convergência dos métodos. Além disso, a quantidade de iterações definida para o processo de reinicialização pode determinar a convergência do método. Isso pode ser observado no segundo exemplo, quando kmax < 94 os métodos GMRES e CMRH não convergiram. Em geral, nos outros exemplos realizados, os métodos GMRES e CMRH tiveram convergência muito parecida, apresentando quase sempre resultados melhores que o LCD.

Referências

- [1] Y. Dai, and J. Yuan. Study on semi-conjugate direction methods for non-symmetric systems, *International journal for numerical methods in engineering*, volume 60, pages 1383–1399, 2004.
- [2] M. Heyouni, and H. Sadok. A new implementation of the CMRH method for solving dense linear systems, *Journal of Computational and Applied Mathematics*, volume 213, pages 387–399, 2008.
- [3] Y. Saad, and M.H. Martin. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on scientific and statistical computing, volume 7, pages 856–869, 1986.