Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Resolução de um Problema de Despacho Econômico de Carga utilizando Enxames de Partículas e Vaga-lumes

Jefferson Oliveira dos Santos¹ Centro de Tecnologia de Alegrete, UNIPAMPA, Alegrete, RS Kléber Kapelinski² Centro de Tecnologia de Alegrete, UNIPAMPA, Alegrete, RS Eduardo Machado dos Santos³ Centro de Tecnologia de Alegrete, UNIPAMPA, Alegrete, RS João Plínio Juchem Neto⁴ Centro de Tecnologia de Alegrete, UNIPAMPA, Alegrete, RS

Resumo. O objetivo deste trabalho é resolver um problema de despacho econômico de carga considerando quinze unidades geradoras termoelétricas, perdas nas linhas de transmissão e limites máximos e mínimos de geração para cada geradora. Para tanto, serão utilizadas as heurísticas otimização por enxame de partículas (PSO) e de vaga-lumes (FA), e os resultados comparados com a solução obtida via método dos multiplicadores de Lagrange (MML). Como principal resultado, obteve-se que a melhor solução obtida pelo FA foi muito mais precisa do que a obtida pelo PSO, quando comparados com o MML, embora a um custo computacional consideravelmente maior.

Palavras-chave. Despacho Econômico de Carga, Otimização por Enxame de Partículas, Otimização por Enxame de Vaga-lumes, Multiplicadores de Lagrange.

1 Introdução

O despacho econômico de carga (DE) consiste em um problema de otimização restrito não-linear onde se deseja alocar a carga demandada pelo sistema elétrico de potência nas unidades geradoras, de modo a alcançar o menor custo total de geração [3]. Quando o sistema analisado possui muitas unidades geradoras, geralmente se torna muito trabalhoso resolvê-lo utilizando o método tradicional dos multiplicadores de Lagrange (MML) [7]. Nestes casos, estão sendo muito utilizados heurísticas bioinspiradas, que apresentam como diferencial sua fácil implementação e eficiência [4,6]. Heurísticas bastante utilizadas na área de Engenharia são a otimização por enxame de partículas (PSO) [4] e otimização por enxame de vaga-lumes (AF) [8].

¹jeffersonoliveiradosantos@gmail.com

²kleberkapelinski@hotmail.com

³eduardosantos@unipampa.edu.br

⁴plinio@unipampa.edu.br

 $\mathbf{2}$

Neste trabalho serão utilizados o PSO e o FA para resolver o problema de despacho econômico de carga considerando quinze unidades geradoras termoelétricas, perdas nas linhas de transmissão e limites máximos e mínimos de geração para cada geradora, tal como apresentado em [1], embora sem considerar zonas proibidas de operação. Em [1] os autores usam uma variação do PSO para resolver o DE. Para ambos algoritmos será utilizado um critério de parada considerando uma estimativa do erro nas 500 últimas iterações [10]. Por fim, os resultados obtidos serão comparados com a solução encontrada utilizando o MML.

Este trabalho está estruturado da seguinte forma: na Seção 2 é abordado o problema de Despacho Econômico de Carga (DE); na Seção 3 é apresentado o método de Otimização por Enxame de Partículas; na Seção 4 o método de Otimização por Enxame de Vagalumes; na Seção 5 são apresentados e discutidos os resultados obtidos na resolução do DE de um sistema com quinze termoelétricas. Por fim, na Seção 6, se encontram as principais conclusões e perspectivas futuras.

2 Despacho Econômico de Carga

Em um problema de DE com n usinas termoelétricas, o custo total é dado pelo somatório do custo individual de cada unidade de geração, $\sum_{i=1}^{n} C_i(P_i)$, onde C_i é a função de custo do combustível da unidade de geração i em h, que é aproximada por uma função quadrática convexa em termos da potência gerada [2], $C_i(P_i) = a_1 P_i^2 + b_i P_i + c_i$, e P_i é a potência gerada pela mesma unidade i em MW. Além disso, os limites de operação de cada usina são dados pelas restrições $P_i^{min} \leq P_i \leq P_i^{max}$, $i = 1, \ldots, n$, e o somatório da potência gerada pelas unidades deve atender a demanda total do sistema:

$$\sum_{i=1}^{n} P_i - P_D - P_L(P_1, \cdots, P_n) = 0,$$

onde a perda nas linhas de transmissão é dada pela fórmula de perdas de Kron [5]:

$$P_L(P_1, \cdots, P_n) = \sum_{i=1}^n \sum_{j=1}^n B_{ij} P_i P_j + \sum_{i=1}^n B_{0i} P_i + B_{00},$$

sendo B_{ij} é o ij-ésimo elemento da matriz de coeficientes de perda simétrica, B_{0i} é o i-ésimo elemento do vetor de coeficiente de perdas e B_{00} é a constante do coeficiente de perda. Matematicamente, o problema de despacho econômico apresentado pode ser escrito como o problema de otimização restrito não-linear dado pela equação (1):

$$\begin{cases} \min & C(P_1, \cdots, P_n) = \sum_{i=1}^n C_i(P_i) \\ \text{s.a.} & \sum_{i=1}^n P_i - P_D - P_L(P_1, \cdots, P_n) = 0 \\ & P_i^{\min} \le P_i \le P_i^{\max}, \ i = 1, \dots, n \end{cases}$$
(1)

3

3 Otimização por Enxame de Partículas

Em 1995, inspirado no comportamento social constatado em variadas espécies de pássaros, cardumes de peixes e enxames de insetos, a heurística Otimização por Enxame de Partículas (PSO) foi apresentada por James Kennedy e Russell Elberhart [4].

O PSO está baseado em uma população composta por indivíduos capazes de interagir entre si e com o meio ambiente. Portanto, cada partícula é influenciada por dois fatores: um social e outro cognitivo. O social, gBest (gB), relaciona a influência que a melhor partícula exerce sobre toda população e o cognitivo, pBest (pB), reflete o melhor resultado obtido individualmente [6].

Neste método, um enxame com N partículas é inicializado em posições aleatórias dentro do espaço de busca. Em seguida, a função objetivo é calculada para cada partícula, e a partícula i, cuja posição é \vec{x}_i , deverá se mover com uma velocidade \vec{v}_i , a qual é calculada por (2):

$$\vec{v}_i(k+1) = \vec{v}_i(k) + \varphi_1 \epsilon_1(\vec{x}_{p_B} - \vec{x}_i(k)) + \varphi_2 \epsilon_2(\vec{x}_{g_B} - \vec{x}_i(k)),$$
(2)

sendo o índice k o passo da iteração, \vec{x}_{p_B} a posição onde ocorre o pBest, \vec{x}_{g_B} a posição onde ocorre o gBest, ϵ_1 , ϵ_2 variáveis aleatórias com distribuição uniforme no intervalo [0,1] e as constantes φ_1 e φ_2 os parâmetros cognitivo e social, respectivamente. Assim, a posição da partícula *i* é atualizada por (3):

$$\vec{x}_i(k+1) = \vec{x}_i(k) + \vec{v}_i(k+1).$$
(3)

Como forma de evitar que as partículas não saiam do espaço de busca, são impostos limites para o módulo da velocidade das partículas, $v_{max} > 0$, conforme (4):

$$|\vec{v}_i| > v_{max} \Rightarrow \vec{v}_i = \frac{\vec{v}_i}{|\vec{v}_i|} v_{max}.$$
(4)

4 Otimização por Enxame de Vaga-lumes

Existem muitas espécies de vaga-lumes, onde cada espécie tem uma forma particular de se comunicar através de sua luz. O ritmo, a frequência e quantia de tempo das piscadas definem o sistema de sinalização dos vaga-lumes [8]. Este sistema serve para atrair parceiros de acasalamento, atrair potenciais presas e, também serve como mecanismo de alerta da presença de predadores. A visibilidade de um vaga-lume está associada com a distância a que ele está do observador. Além disso, o ar também absorve uma parcela da luminosidade, o que se torna outro fator associado à visibilidade do vaga-lume.

Na otimização por enxame de vaga-lumes (FA) proposto em [8], a ideia é associar a função objetivo com a luz dos vaga-lumes, desta forma, quanto melhor a solução, o brilho do vaga-lume é maior. No algoritmo são idealizadas três regras básicas: todos vaga-lumes se atraem independente do gênero (são unissex); a atratividade de um vaga-lume está relacionada com o seu brilho (o menos brilhante tende a se dirigir ao mais brilhante); e o brilho do vaga-lume é afetado ou determinado pelo panorama da função objetivo.

Neste algoritmo existem dois problemas importantes, que são, a variação da intensidade de luz, e a formulação da atratividade.

Λ	
±	

A atratividade de um vaga-lume é determinada por seu brilho. Em um caso simples, assume-se que a intensidade de luz de um vaga-lume é proporcional ao valor da função objetivo na sua posição. A atratividade β é relativa, ela varia com a distância r entre dois vaga-lumes (r_{ij}) . A intensidade de luz diminui quanto mais distante se estiver da fonte, e também a luz é absorvida no meio, sendo assim, a intensidade de luz I varia com um grau de absorção.

De uma forma simples, pode-se aproximar a intensidade de luz I a uma distância r da fonte de luz I_s , pela expressão $I(r) = I_s e^{-\gamma r^2}$. Como a atração é proporcional à intensidade de luz vista pelos vaga-lumes, a atratividade é definida por $\beta(r) = \beta_0 e^{-\gamma r^2}$, onde β_0 é a atratividade em r = 0. Note que nestas expressões existe uma distância característica, onde a atratividade muda significativamente de β_0 para β_0/e . Esta distância característica é definida como $\Gamma = 1/\sqrt{\gamma}$.

A distância entre dois vaga-lumes é determinada pela distância Euclidiana, para d dimensões do problema: $r_{ij} = \sqrt{\sum_{k=1}^{d} \left(\vec{x}_i^k - \vec{x}_j^k\right)^2}$. Desta forma, o movimento de um vaga-lume *i*, que é atraído por outro mais atrativo (mais brilhante) *j*, é determinado por:

$$\vec{x}_{i} = \vec{x}_{i} + \beta_{0} e^{-\gamma r_{ij}^{2}} \left(\vec{x}_{j} - \vec{x}_{i} \right) + \alpha \left(\epsilon - \frac{1}{2} \right).$$
 (5)

O segundo termo em (5) está relacionado à atração, e irá dirigir o vaga-lume *i* para o *j*. O terceiro termo diz respeito ao comportamento aleatório do vaga-lume, onde α é a constante que dá peso a este comportamento e ϵ uma variável aleatória uniformemente distribuída no intervalo [0, 1]. Em geral tem-se $\alpha \in [0, 1]$ e $\beta_0 = 1$. O coeficiente de absorção γ geralmente é constante e varia entre 0,01 e 100. Em [8] é mostrado que quando $\gamma \rightarrow 0$, o FA se reduz a um caso particular do PSO, onde todas as partículas conseguem ver todas as outras com precisão no espaço de busca.

5 Resultados

Nesta seção será resolvido o DE descrito por (1) para o sistema com quinze unidades geradoras apresentado em [1]. Neste sistema, n = 15, a demanda de potência total é $P_D = 2.630$ MW e todos os seus dados e parâmetro podem ser consultados em [1]. Foram considerados os seguintes parâmetros na implementação das heurísticas:

- PSO: foram realizadas 20 execuções considerando condições iniciais aleatórias e os parâmetros N = 100, φ₁ = φ₂ = 2, v_{max} = 5.
- FA: foram realizadas 20 execuções considerando condições iniciais aleatórias e os parâmetros N = 100, $\alpha = 0, 5$, $\beta_0 = \gamma = 1$.

A função objetivo utilizada em ambas heurísticas é dada por:

$$f(P_1, \dots, P_{15}) = \sum_{i=1}^{15} C_i(P_i) + \phi \left| \sum_{i=1}^{15} P_i - P_D - P_L(P_1, \dots, P_{15}) \right|$$

5

onde o fator de penalização utilizado foi $\phi = 50$. Além disso, como critério de parada foi calculado o erro relativo estimado nas últimas 500 iterações e verificado se esse erro é menor do que a toletância de 10^{-6} [10]. Todas as simulações computacionais foram realizadas utilizando o software Matlab executado em um computador com processador Intel(R) Core(TM) i3-3110M, de 2.40 GHz e 4GB de RAM, sistema operacional Windows 8.1 Pro 64bits. Para o caso do FA, foi utilizada a implementação em Matlab disponível em [9].

Na Tabela 1 são apresentadas estatísticas dos custos totais encontrados tando pelo PSO quanto pelo FA. Nesta tabela pode-se verificar que a melhor solução encontrada pelo FA, de 32.551, 70 \$/h, é aproximadamente 1,1% menor do que a apresentada pelo PSO, de 32.912,00 \$/h. Além disso, o PSO apresentou uma variabilidade de soluções entre uma execução e outra significativamente maior do que o FA, conforme observado pelos valores de desvio padrão apresentados.

Tabela 1: Estatística dos Custos Totais						
	$\min(\$/h)$	média(\$/h)	$\max(\text{h})$	Desvio padrão(h)		
PSO	32.912,00	$33.108,\!61$	33.313,11	109,95		
FA	32.551,70	32.584,91	32.686,94	40,08		

Na Tabela 2 verifica-se que o custo computacional do FA (medido pelo número total de iterações) tende a ser bem maior do que o do PSO: em média foi 303,49% maior.

Tabela 2: Estatística do Número Total de Iterações

	min	média	max	Desvio padrão
PSO	1.000	2.125	4.500	1.266
FA	1.000	8.650	22.000	7.025

Na Tabela 3 estão os melhores resultados obtidos pelo PSO e pelo FA, assim como a solução obtida via método de multiplicadores de Lagrange, para comparação. A solução via MML foi obtida usando o comando nativo **fsolve** do Matlab para resolver numericamente o sistema de equações não-lineares associado. Embora o FA seja mais custoso computacionalmente, apresentando um número total de iterações 550% maior do que o PSO, seu melhor resultado obtido é bem mais próximo da solução do MML (0.01%) do que o PSO (1,12%). Por fim, na Figura 1 são apresentados os gráficos de convergência da melhor solução tanto do FA, quanto do PSO, em comparação com a solução obtida via MML.

Conclusões 6

Neste trabalho aplicou-se as heurísticas de otimização por enxames de partículas (PSO) e vaga-lumes (FA) na resolução de um problema de despacho econômico de carga considerando quinze unidades geradoras termoelétricas, perdas nas linhas de transmissão e limites 6

Tabela 3: Melhores Resultados e Comparação com MML						
Saídas de Potência	MML	PSO	FA			
Unidade 1(MW)	455,0000	335,7774	454,9984			
Unidade 2(MW)	455,0000	454,9628	455,0000			
Unidade 3(MW)	130,0000	74,7213	129,9999			
Unidade 4(MW)	130,0000	97,6500	130,0000			
Unidade 5(MW)	238,5672	425,1476	256,5043			
Unidade 6(MW)	460,0000	459,1562	460,0000			
Unidade 7(MW)	465,0000	421,9807	465.0000			
Unidade 8(MW)	60,0000	76,5381	60.0000			
Unidade 9(MW)	25,0000	70.2370	25,0749			
Unidade 10(MW)	25,7775	72,1925	39,3442			
Unidade 11(MW)	77,5615	73,2532	54,8060			
Unidade 12(MW)	80,0000	30,6467	71,7712			
Unidade 13(MW)	25,0000	$25,\!2195$	25,0004			
Unidade 14(MW)	15,0000	24,6739	15,0009			
Unidade 15(MW)	15,0000	24,0569	15,0021			
$P_L (MW)$	26,9062	36,2138	27,5023			
P_D (MW)	2.630,0000	2.630,0000	2.630,0000			
$\sum P_i$ (MW)	2.656,9062	2.666,2138	2.657,5023			
Custo(\$/h)	32.547,50	32.912,00	32.551,70			
Iterações	-	2.000	13.000			
Tempo (seg)	-	8,3523	367,4753			

Figura 1: Convergência das Melhores Soluções do FA e PSO.

máximos e mínimos de geração para cada geradora. Além disso, comparou-se a eficácia e

eficiência destes dois métodos entre si, assim como com o resultado obtido através de sua resolução via multiplicadores de Lagrange.

A principal conclusão obtida com as simulações computacionais realizadas foi a de que, embora o PSO tenha se mostrado um método mais eficiente, apresentando convergência mais rápida com o critério de parada adotado, o FA foi mais eficaz, no sentido de que obteve uma solução melhor do que a do PSO. Enquando o PSO obteve um custo mínimo de 32.912, 00 \$/h em 2.000 iterações (8,3523 segundos), o FA obteve um custo de 32.551, 70 \$/h em 13.000 iterações (367,4753 segundos). Comparando com o custo ótimo obtido via MML, de 32.547, 50 \$/h, o FA apresentou um custo apenas 0,01% maior do que ele, enquanto o custo via PSO foi de 1,12% maior.

Como continuidade a este trabalho, serão estudadas formas de tornar o algoritmo dos vaga-lumes mais eficiente computacionalmente.

Referências

- L. S. Coelho, C. S. Lee. Solving economic load dispatch problems in power systems using chaotic and gaussian particle swarm optimization approaches. *International Journal of Electrical Power & Energy Systems*, Elsevier v. 30, n. 5, p. 297-307, 2008.
- [2] M. Djurovic, A. Milancic, M. Krsulja. A simplied model of quadratic cost function for thermal generators, *Proceedings of the 23rd DAAAM Symposium*, p. 25-25, 2012.
- [3] A. Gómez-Expósito, A. Conejo, C. Cañizares, Sistemas de Energia Elétrica: análise e operação, LTC, RJ, 2011.
- [4] A. Mahor, V. Prasad, S. Rangnekar. Economic dispatch using particle swarm optimization: a review. *Renewable and sustainable energy reviews*, Elsevier v. 13, n. 8, p. 2134-2141, 2009.
- [5] H. Saadat, Power System Analysis, McGraw-Hill, 1999.
- [6] A. B. S. Serapião. Fundamentos de Otimização por Inteligência de Enxames:uma visão geral. *Controle e Automação*, SBA: Sociedade Brasileira de Automática, v. 20, n. 3, p. 271-304, 2009.
- [7] C. P. Simon, L. Blume, *Matemática para Economistas*, Bookman, 2004.
- [8] X. S. Yang. Firefly algorithms for multimodal optimization. International symposium on stochastic algorithms, Springer, p. 169-178, 2009.
- X. S. Yang, Firefly Algorithm, version 1.2, (https://www.mathworks.com/ matlabcentral/fileexchange/29693-firefly-algorithm), MATLAB Central File Exchange, acessado em 2 de março de 2017.
- [10] K. Zielinski, D. Peters, R. Laur. Stopping Criteria for Single-Objective Optimization. Proceedings of the Third International Conference on Computational Intelligence, Robotics and Autonomous Systems, Citeseer of 2005.

7