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This article proposes an algorithm to minimize the Frobenius norm of output feedback matrix
of a regular, linear time invariant, continuous time descriptor system. The resulting gain
matrix ensures that the closed loop system is impulse-free and the associated non singular
matrix is well-conditioned. By characterizing a subset of the set of non singular matrices
through a linear matrix inequality, the related optimization is formulated as a semi-definite
program.
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1 Introduction

This paper deals with the problem of stabilization by static output feedback for linear
descriptor systems. Remind that an n−dimensional descriptor system consists of a mixture
of n−q algebraic equations and q first order diferential equations. Descriptor systems arise
naturally in the modelling of several dynamical systems commonly used in engineering ap-
plications, such as biological system, power systems and other interconnected systems [12].
Besides guaranteeing the closed-loop asymptotical stability, two other properties are de-
sired in practice: closed-loop regularity and absence of impulsive behavior. The problem
of computing a suitable static output feedback, from which these closed-loop propierties
are verified, is called simply stabilization problem. These three desired properties can be
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described in terms of the closed-loop eigenstructure: (i) the asymptotic stability is equiva-
lent to have all the finite poles in the left half complex plane; (ii) the absence of impulsive
modes is equivalent to have q finite closed-loop; and (iii) the regularity is guaranteed if
the system is impulse-free. Thus, the necessary and sufficient conditions for the existence
of a S-stabilizing output feedback are obtained as a set of coupled (generalized) Sylvester
equations in [9], [7] . In case of normal systems, it is shown that output stabilizable
(C,A,B)-invariant subspaces are obtained through a pair of coupled Sylvester equations
for systems verifying Kimura’s condition, thus two algorithm are proposed to solve the
coupled Sylvester equations in [6], [14].

Since the impulsive response is undesirable in practical applications. One of the ef-
fective ways to eliminate impulses from a linear time invariant (LTI) descriptor system
is by designing a suitable output feedback matrix that reduces the nilpotent index to one
or strangeness index to zero (see [12], [9], [10] and the references therein). In the process,
one has to select a output feedback gain matrix such that an appropriate sub-matrix, in
the closed loop, would be non singular. It has been shown in [12], [9] that the inverse
of resulting non singular matrix plays important role while designing a output feedback
control for assigning the closed loop finite poles at appropriate locations in the complex
plane. Hence, the non singular matrix should be well-conditioned to avoid numerical er-
rors in the finite pole placement. The choice of feedback output matrix that eliminates
impulses from the response of a descriptor system is not unique [12], [10], [9]. On the other
hand, a limited magnitude of control signal can be provided to the actuators and the cost
of the actuator grows quickly with increasing the amplitude of control signal. Since the
control signal amplitude is directly proportional to the norm of the output feedback ma-
trix, the minimum norm output feedback matrix satisfying the desired objectives would
be preferable [13].

In this article we propose a convex algorithm to minimize the norm of output feedback
matrix for an LTI regular descriptor system, ensuring that i) the response of the closed
loop system is impulse free and ii) the associated non singular matrix is well-conditioned.
To obtain a well-conditioned non singular matrix, we formulate a linear matrix inequality
(LMI) optimization that minimizes the largest singular value and maximizes the smallest
singular value of non singular matrix, simultaneously. Although there are several existing
algorithms for impulse elimination, to the best of our knowledge, no results in the literature
available that combines the above objectives and formulated it as a convex optimization
in [8]. Rest of the paper is organized as follows. In Section II we formulate the problem
following to some preliminaries on descriptor systems. In Section III we formulate the
optimization to minimize the norm of output matrix, while at the same time improve the
condition number of associated non singular matrix. Finally, we conclude in Section IV .

Notations: The set of all m×n constant real matrices is denoted as Rm×n. In stands
for an identity matrix of size n × n. The Frobenius norm of A ∈ Rm×n is denoted as

||A||K , and defined as ||A||K :=
√∑m

i=1

∑n
j=1 |aij |2. A > 0 (A ≥ 0) denotes that A is a

symmetric positive definite (symmetric positive semi-definite) matrix.
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2 Problem formulation

Let us consider an LTI continuous time descriptor system represented by the following
equation:

Eẋ = Ax+Bu (1)

y = Cx (2)

x(t0) = x0,

where, if algebraic constraints are present, E ∈ Rn×n is singular, A ∈ Rn×n, and B ∈
Rn×m, x : R −→ Rn is the state vector with initial condition x(t0) = x0 and u : R −→ Rm

is an input to the system. We assume that system (1) is regular, i.e., there exists a
complex number s ∈ C such that det(sE − A) 6= 0 (where det() stands for determinant
of a matrix). We refer to the roots of polynomial det(sE − A) as finite poles of system
(1). Furthermore, we assume that system (1) is impulse controllable and the involved
matrices have appropriate dimensions. It is also assumed that B is full column-rank, C is
full row-rank and that (C,A,B) is stabilizable and detectable.

The studied problem is to find a static output feedback control law

u(t) = Ky(t), (3)

such that σ(E,A+BKC) ∈ C− or, equivalently, the closed-loop system is asymptotically
stable. Considered the system

E1ẋ(t) = A1x(t) +B1u(t) (4)

0 = A2x(t) +B2u(t). (5)

Let V ∈ Rv×v be such that span(V ) = V and T ∈ Rn−v×v be a left annihilator of V ,
i.e, KerTE = ImV . The following theorem relates the existence of a stabilizing static
output feedback control law (3), to the solution of two coupled Sylvester equations. The
system (4) is impulse controllable, i.e. rank[E AS∞B], where the coluns of the matrix
S∞ span the kernel of E. Then there exists a output feedback K such that u = Ky where
K ∈ Rm×p, such that the closed loop system:

Eẋ = (A+BKC)x, (6)

would be impulse free, equivalently,

E1ẋ(t) = A1x(t) +B1K1C1u(t) (7)

0 = A2x(t) +B2K2C2u(t), (8)

is impulse-free and the matrix HK =

[
E1

A2 +B2K2C2

]
∈ Rn×n is non singular. Since E1

is full row rank: rank(E1) = q, there exists an orthogonal matrix W ∈ Rn×n such that
HW := HW would be in the following form (obtained by QR decomposition):
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HW =

[
E1

A2

]
W =

[
E1 0
A21 A22

]
, where E ∈ Rq×q is non singular and A22 ∈

Rn−q×n−q. Now, by defining the output feedback matrixK as follows: K =
[

0 K2C2

]
W T ,

whereK2 ∈ Rn−q×n−q, we obtain the following relation: HKW =

[
E1

A2

]
W+

[
0

B2K2C2

]
W =[

E11 0
A21 A22 +B2K2C2

]
, where A22 + B2K2C2 ∈ Rn−q×n−q. Note that the matrix E11

is non singular, and hence to make the closed loop system impulse-free we have to ensure
that det(A22 +B2K2C2) 6= 0. Furthermore, it is demonstrated in [12], [9] that the inverse
of matrix A22 +B2K2C2 is needed while computing output feedback matrix for assigning
the closed loop finite poles at appropriate locations in the complex plane. Hence, to avoid
numerical errors in the finite pole placement, special care must be taken while computing
K2C2, so as to ensure that A22+B2K2C2 is well-conditioned. In this context, the problem
of interest can be precisely posed as follows.

Problem 1: Find inf ||K||K such that i) response of the closed loop system (6) is
impulse-free that is, det(A22+B2K2C2) 6= 0 and ii) the condition number of A22+B2K2C2

is small.

3 Controller Design

In this section we formulate a semi-definite program to compute a desired output
feedback matrix K which will ensure that the closed loop system (6) is impulse free and
such that the matrix A22 +B2K2C2 is well-conditioned. For this purpose, let us define a
set N as follows:

N = {K2 ∈ Rm×n−q/det(A22 +B2K2C2) 6= 0}. (9)

Problem 2: FindminK2∈N ||K||K such that the matrixA22+B2K2C2 is well-conditioned.
Note that Problem 2 is a non-convex optimization since the set N is non-convex. To con-
vexity the problem we establish a sufficient condition on K2 in the following result based
in [8] .

Theorem 3.1. Let us denote AK2 = A22 +B2K2C2. If K2 satisfies following condition:[
1
2(AK2 +ATK2) βIn−q

βIn−q In−q

]
� 0, (10)

for some positive β then AK2 ∈ R(n−q)×(n−q) is non singular.

Proof: According to the Schur complement relation, (9) can be written as follows:
1
2(AK2 +ATK2)− β2In−q � 0 =⇒ λmin(12(AK2 +ATK2)) > β2

=⇒ sn(AK2) ≥ λmin(12(AK2 + ATK2)) > β2 where sn(AK2) is the smallest singular
value of AK2 and λmin(12(AK2 +ATK2)) is the minimum eigenvalue of 1

2(AK2 +ATK2). Since
the smallest singular value of AK2 is greater than zero, the matrix AK2 is non singular.
This completes the proof.
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Note that Theorem (3.1) defines a sufficient condition on K2 such that the matrix AK2

is non singular. Additionally, inequality (9) is an LMI in β and K2. Let us define a set
M as follows:

M = {K2 ∈ Rm×n−q/LMI (10) holds for β > 0)}. (11)

Then, M is a convex set; furthermore, M ⊆ N . Hence, instead of using a non convex
set in Problem 2, we perform optimization over a convex set M . Next, we discuss on
formulating a semi-definite program to minimize ||K||K .

Let us denote kTi for i = 1, 2, . . . ,m as the ith row of K2. Then, ||K||K can be
minimized resulted in a positive scalar λ which satisfies an LMI:[

I k
kT λ

]
� 0,

where k = [kT1 , k
T
2 , . . . , k

T
m]T . This can be seen as follows: applying the Schur complement

formula, we have
kTk < λ =⇒ ||K2||K < λ.

Since W is orthogonal, we can write

||K||K = ||
[

0 K2

]
W T ||K = ||K2||K < λ.

Hence, to compute minimum norm K that eliminate impulses from the response of the
closed loop system (4), we formulate the following convex optimization:

Problem 3: Findmink,β,λλ subject to i)

[
1
2(AK2 +ATK2) βIn−q

βIn−q In−q

]
� 0; ii)

[
I k
kT λ

]
�

0 for β > 0.
The solution of Problem 3 will produce a non singular matrix A22 + B2K2C2, and

hence the closed loop system (4) would be impulse-free. However, with this setting, since
we are allowing β to take any arbitrary small positive number, the smallest singular value
of AK2 (sn(AK2)) will also be very small. Then, the condition number of AK2,

k(AK2) =
s1(AK2)

sn(AK2)
, (12)

where s1(AK2) is the largest singular value of AK2, would be very large, and hence the
resulting non singular matrix AK2 might be ill-conditioned. We formulate an optimization
where sn(AK2) is maximized and s1(AK2) is minimized simultaneously. This strategy will
help us in improving the condition number of AK2. We have already shown in Theorem 1
that sn(AK2) ≥ β2, and hence maximization of β will maximize AK2. Now, we will show
that minimization of λ essentially reduces the maximum singular value of AK2 (s1(AK2)).
Note that s1(AK2) can be written as follows:

s1(AK2) = s1(A22 +B2K2C2) (13)

≤ s1(A22) + (s1(B2)s1(K)s1(C2)) (14)

≤ s1(A22) + s1(B2)λs1(C2), (15)
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and hence s1(AK2) can be reduced by minimizing λ. The above inequalities follows from
[11, Theorem 3.3.16]. Hence, a relaxed optimization associated with Problem 2 can be
formulated as follows:

Problem 4: Find maxk,β,λβ − λ subject to i)

[
1
2(AK2 +ATK2) βIn−q

βIn−q In−q

]
� 0; ii)[

Imn k
kT λ

]
� 0 for β > 0.

Since the constraints (i) and (ii) in Problem 4 are LMIs and the objective function is
linear, it is an LMI optimization problem, and hence can be solved by existing standard
LMI solvers see [8]. Once K2 is computed by solving Problem 4, the desired matrix K,
which makes the closed loop system (4) impulse free, can be obtained from the relation
(7). The optimization Problem 4 is always feasible since we have assumed that the system
(1) is impulse controllable.

Remark 3.1. Recall that the set N , defined in (9), is a non convex set. Hence, to
convexity the related optimization we compute a set M , in (9), which is a convex subset
of N , and perform optimization over M . As a result the optimal (sub-optimal) solution
of Problem 4 is an upper bound for the minimum value of ||K||K . In the following section
we consider a numerical example to verify the effectiveness of the proposed approach.

4 CONCLUSION

In this work we develop a novel algorithm to compute a output feedback matrix for an
LTI regular descriptor system to eliminate impulses from the response. We represent a
subset of the set of non singular matrices by an LMI, which enables to formulate the asso-
ciated problem as a semi-definite program. We demonstrated through numerical example
that the objective of only minimizing the norm of gain matrix might produce numerical
errors while assigning the closed loop finite poles. This difficulty is then overcome by
defining a cost function which simultaneously minimizes the norm of gain matrix and im-
prove the condition number of the associated non singular matrix. The proposed method
can be extended in the direction of developing a convex algorithm to minimize the norm
of output feedback matrix for assigning the finite poles at i) some fixed locations ii) within
a stability region in the complex plane. These objectives are under current investigation.
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