
Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics

The use of the reverse Cuthill-McKee method with an

alternative pseudo-peripheral vertice finder for profile

optimization

Sanderson L. Gonzaga de Oliveira and Alexandre Abreu1

Departamento de Ciência da Computação, UFLA, Lavras, MG

Abstract. The need to determine pseudo-peripheral vertices arises from several methods
for ordering sparse matrix equations. This paper evaluates an alternative algorithm for
finding such vertices based on the Kaveh-Bondarabady algorithm. Specifically, this paper
evaluates a variation of this algorithm against the original algorithm and the George-Liu
algorithm. Extensive experiments among these algorithms in conjunction with the reverse
Cuthill-McKee method suggest that the modified algorithm is a suitable alternative for
reducing profile of symmetric matrices.

Keywords. Sparse matrices, Graph labeling, Graph algorithm, Reverse Cuthill-McKee
method, Profile reduction, Graph theory.

1 Introduction

Several problems in modern engineering demand the analysis and solution of large and
complex problems defined by a set of linear equations in the form Ax = b, where A = [aij]
is an n × n large-scale sparse matrix, b is a known vector of length n, and the unknown
vector x of length n is sought. Particularly, an efficient solution using a direct method
demands to order the variables of the problem. Moreover, two other methods for solving
these types of linear equations, which have found wide use in finite element analysis,
are the profile and frontal solution schemes. These methods demand the equations to be
processed in a proper order to compute the solution efficiently. Thus, for the profile method
to present low computational cost it is necessary to order the equations. Specifically in
finite element analysis, in the case of one degree-of-freedom per node, performing a vertex
reordering is equivalent to reorder the equations. Similarly, performing a vertex reordering
is also equivalent to reorder the equations in partial differential equations finite-volume
discretizations. Additionally, many solvers of sparse linear systems are computed after
a matrix reordering to reduce the fill-in during Gaussian elimination. In addition, the
computational cost of iterative solvers for the numerical solution of sparse linear system
of equations can be reduced by using a heuristic for matrix profile reductions [2, 10]. To
provide more specific detail, the transfer of information to and from memory is related

1sanderson@dcc.ufla.br,alexandregrandeabreu@gmail.com

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017.

DOI: 10.5540/03.2018.006.01.0441 010441-1 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0441

2

to the number of non-null coefficients in the lines of the matrix system A. Cache misses
are minimized if the non-null coefficients in each line lie in the same level of the memory
hierarchy. Thus, cache misses are associated with the profile of A.

Let A be a symmetric adjacency matrix associated with a connected undirected graph
G = (V,E), where V and E are sets of vertices and edges, respectively. The profile of a
matrix A is defined as profile(A) =

∑n
i=1[i−min((1 ≤ j < i) aij 6= 0)].

Several algorithms for profile reductions are based on a data structure known as rooted
level structure (RLS) [10]. Given a vertex v ∈ V , the level structure L (v) rooted at
vertex v, with depth `(v), is the partitioning L (v) = {L0(v), L1(v), . . . , L`(v)(v)}, where

L0(v) = {v} and Li(v) = Adj(Li−1(v)) −
⋃i−1

j=0 Lj(v), for i = 1, 2, 3, . . . , `(v) and
Adj(.) returns the adjacent vertices to the vertices of the argument. In particular, `(v) =
max{(∀u ∈ V) d(v, u)} denotes the eccentricity of the vertex v and the distance d(v, u) is
the length of a shortest path connecting vertices v and u. The width of an RLS L (u) is
defined as b(L (u)) = max((0 ≤ i ≤ `(u)) |Li(u)|).

Results of many graph theoretic-based heuristics for profile reductions depend upon the
choice of a starting vertex [10]. A peripheral vertex is a proper starting vertex for heuristics
for profile reductions. However, finding peripheral vertices in graphs is computationally
expensive, that is, for a graph G = (V,E), one can find a peripheral vertex by executing
|V | breadth-first search procedures, obtaining O(|V |(|V |+ |E|)) in these operations. As a
result, many heuristics for profile reductions use pseudo-peripheral vertices (PPVs) instead
of using peripheral vertices. There exists alternative algorithms for finding peripheral
vertices, including Arany’s algorithm [1], but these algorithms are still computationally
expensive when compared with an algorithm for finding a PPV. Thus, several heuristics
for profile reductions require as a first step the determination of a PPV.

This paper evaluates an alternative low-cost algorithm for finding PPVs. Section 2
describes this algorithm. Section 3 describes how the simulations were conducted in this
study and shows the results. Finally, Section 4 provides the conclusions.

2 Algorithms for finding pseudo-peripheral vertices

The George-Liu (GL) algorithm [6] for finding pseudo-peripheral vertices is available
on the MATLAB software [12], in conjunction with the reverse Cuthill-McKee (RCM)
method [5]. The RCM-GL method is O(|V |+ |E|) and shows low computational costs [10].
This algorithm was implemented and evaluated in our computational experiment.

Algorithm 1 shows the Kaveh and Bondarabady [11]. We will refer this algorithm as
KB2. This algorithm selects a vertex v of minimum degree (in line 2). Then, it generates
an RLS L (v) (in line 3), computes its width b(L (v)) (in line 4), and selects one vertex u
of minimum degree (in line 8) from each level Li(v) of L (v) (see the for loop in lines 7-16
of Algorithm 1). The KB2 algorithm generates an RLS L (u) from each of such vertices
(in line 9), computes its width b(L (u)) (in line 10), and choose the one corresponding to
the smallest width (in lines 11-15). It repeats the process as far as reduction in width of
the current RLS can be observed (see the repeat-until loop in lines 7-17 of Algorithm 1).
Finally, the Kaveh-Bondarabady algorithm returns a pseudo-peripheral vertex s with a

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0441 010441-2 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0441

3

small b(L (s)) (in line 18).

Input: graph G = (V,E);
Output: pseudo-peripheral vertex s ∈ V ;

1 begin
2 v ← VertexMinDegree(V);

// build the RLS L (v)
3 L (v)← Breadth-First-Search-variant(v);
4 width← b(L (v));
5 repeat
6 s← v;

// observe each level in the RLS L (v)
7 for (i← 1 to `(v)) do
8 u← VertexMinDegree(Li(v));

// build the RLS L (u)
9 L (u)← Breadth-First-Search-variant(u);

10 w ← b(L (u));
11 if (w < width) then
12 width← w;
13 v ← u;
14 L (v)← L (u);

15 end

16 end

17 until (v = s);
18 return s;

19 end
Algorithm 1: Kaveh-Bondarabady algorithm (KB2) [11].

We implemented and evaluated in this computational experiment a slightly modifica-
tion in the Kaveh-Bondarabady algorithm [11] by starting with an arbitrary vertex instead
of starting with a vertex with minimum degree (in line 2 of Algorithm 1). We will refer
this algorithm as MKB2. We evaluated this simple variation aiming at obtaining satisfac-
tory performance in the “average case”. An advantage of this variation over the original
algorithm is simplicity and the modified algorithm runs faster than the original algorithm.
Moreover, this modified algorithm may be more efficient than the original algorithm be-
cause the exact identification of an element may not compensate the computational effort
employed. Section 3 shows that the modified algorithm obtains better profile results in
symmetric matrices than the original Kaveh-Bondarabady algorithm [11] when providing
starting vertices to the RCM method [4].

We evaluated also to choose an arbitrary vertex instead of selecting a vertex of mini-
mum degree (in line 8 of Algorithm 1). This modification did not improve the algorithm
so that it was discarded.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0441 010441-3 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0441

4

3 Description of the tests, results, and analysis

Three algorithms for finding PPVs were implemented and evaluated in this computati-
onal experiment (George-Liu [6], KB2 [11], and an alternative algorithm for finding PPVs
described in Section 2) in conjunction with the reverse Cuthill-McKee (RCM) method [4].
Thus, these three algorithms (together with the RCM method) are named RCM-GL,
RCM-KB2, and RCM-MKB2, respectively.

Among 74 heuristics for profile reductions found, a systematic review [2] reports the
RCM method as one of the most promising heuristics for profile reductions. In addi-
tion, this method was applied in our computational experiment because it is possibly
one of the most commonly vertex renumbering strategy used [2], and is available in
MATLAB [12] and on Boost C++ Library (http://www.boost.org/doc/libs/1 58 0/libs/-
graph/doc/cuthill mckee ordering.html). Moreover, the RCM-GL method dominated se-
veral other reordering algorithms (e.g. see [2, 7–9]).

The algorithms were implemented in the C++ programming language. Specifically,
the g++ version 4.8.2 compiler was used. To evaluate the profile reductions provided by
these algorithms, 50 symmetric instances contained in the Harwell-Boeing sparse matrix
collection (http://math.nist.gov/MatrixMarket/data/Harwell-Boeing [3]) were used.

The workstation used in the execution of the simulations contained an Intel R© CoreTM

i5-3570 (6144KB Cache, CPU @ 3.40GHz, 12GB of main memory DDR3 1333MHz) (Intel;
Santa Clara, CA, United States). The Slackware 14.1.64 64-bit operating system with
Linux kernel-version 3.10.17 was used.

Table 1 shows the instance’s name and size (n), the value of the initial profile (profile0)
of the instance, and the average value of profile obtained by each algorithm in 10 executions
carried out in each instance. In this set composed of 50 symmetric instances, one can verify
that the RCM-MKB2 algorithm showed the best profile results: this algorithm obtained
the largest number of best results (in 34 instances) in this dataset.

Figure 1 shows computational times obtained using these three heuristics for profile
reductions when applied to 50 instances contained in the Harwell-Boeing sparse matrix
collection. This figure shows that the RCM-MKB2 is faster than the RCM-MKB heuristic
and that the RCM-MKB2 shows computational times similar to the RCM-GL method.

4 Conclusions

A modified Kaveh-Bondarabady algorithm (MKB2) for the identification of pseudo-
peripheral vertices was evaluated in this work. Results of the MKB2 algorithm were
presented in conjunction with the reverse Cuthill-McKee method [4]. The RCM-MKB2
method showed better profile results when applied to 50 symmetric instances contained in
the Harwell-Boeing sparse matrix collection than the RCM method with starting vertex
given by the George-Liu algorithm [6] and the original Kaveh-Bondarabady algorithm [11].

Heuristics for profile reductions contribute to provide adequate memory location, and
hence, improving cache hit rates [2,10]. We plan also to apply the algorithms evaluated in
this work to perform reordering of vertices and reduce the computational cost of iterative
methods for solving linear systems to verify the best method(s) in this context.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0441 010441-4 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0441

5

Tabela 1: Results of three algorithms for finding pseudo-peripheral vertices in conjunction
with the RCM method [4] applied to reduce profile of 50 symmetric instances contained
in the Harwell-Boeing sparse matrix collection.

Instance n profile0 MKB2 GL KB2
ash85 85 1153 589 589 589
bcspwr01 39 292 122 122 131
bcspwr02 49 377 214 234 235
bcspwr03 118 1288 746 804 759
bcsstk01 48 851 636 683 634
bcsstk04 132 3631 3637 3717 3965
bcsstk05 153 2449 2279 2313 2246
bcsstk22 138 2124 851 863 870
can 144 144 7355 1071 1074 1092
can 161 161 3378 2610 3079 3740
dwt 234 234 1765 1329 1363 1519
lund A 147 2870 2303 2303 2303
lund B 147 2870 2299 2303 2299
nos1 237 780 467 467 696
nos4 100 766 816 755 744
494 bus 494 40975 13272 10566 14792
662 bus 662 45165 30032 32903 26043
685 bus 685 28621 17216 17457 22692
ash292 292 4224 3738 4659 4455
bcspwr04 274 21015 4825 4825 3991
bcspwr05 443 36248 8825 8825 12945
bcsstk06 420 14691 13213 13241 13151
bcsstk19 817 74051 9217 9457 9677
bcsstk20 485 4309 4416 4416 4726
bcsstm07 420 14691 13346 13310 13310
can 292 292 23170 9345 9706 9706
can 445 445 22321 21991 23808 24431
can 715 715 72423 37057 41293 48261
can 838 838 207200 35401 40835 41949
dwt 209 209 9503 3664 3914 3442
dwt 221 221 9910 2011 2011 3380
dwt 245 245 3934 5196 4177 3863
dwt 310 310 2696 2779 2695 2695
dwt 361 361 5084 4714 5139 5030
dwt 419 419 39726 8120 8232 12224
dwt 503 503 35914 15544 15544 13948
dwt 592 592 28805 10949 10983 15755
dwt 878 878 26055 19644 21034 20825
dwt 918 918 108355 21176 24347 33700
dwt 992 992 262306 33994 36296 35112
gr 30 30 900 26970 29352 33872 33117
jagmesh1 936 37240 21817 21817 21817
nos2 957 3180 1907 1907 2904
nos3 960 39101 41272 46168 44954
nos5 468 27286 25832 25381 25381
nos6 675 16229 13784 9305 13560
nos7 729 53144 34110 34110 34110
plat362 362 45261 13389 11018 13462
plskz362 362 43090 6736 4635 6483
sherman1 1000 34740 26109 26109 41753
No. of best results – – 34 18 17

Acknowledgements

This work was undertaken with the support of the Fapemig - Fundação de Amparo à
Pesquisa do Estado de Minas Gerais.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0441 010441-5 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0441

6

Figura 1: Execution times, in seconds, obtained using three heuristics for profile reductions
when applied to 50 instances contained in the Harwell-Boeing sparse matrix collection.

Referências

[1] I. Arany. An efficient algorithm for finding peripheral nodes. In L. Lovász and E. Sze-
merédi, editors, Colloquia Mathematica Societatis János Bolyai (Hungarian Edition),
Theory of Algorithms Pécs, volume 44, pages 27–35. North-Holland, Budapest, 1984.

[2] J. A. B. Bernardes and S. L. Gonzaga de Oliveira. A systematic review of heuristics
for profile reduction of symmetric matrices. Procedia Computer Science (Proceedings
of the ICCS 2015 - International Conference On Computational Science, Reykjav́ık,
Iceland), 51:221–230, 2015.

[3] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM
Transactions on Mathematical Software, 15(1):1–14, 1989.

[4] A. George. Computer implementation of the finite element method. PhD thesis,
Stanford University, Stanford, USA, 1971.

[5] A. George and J. W. Liu. Computer solution of large sparse positive definite systems.
Prentice-Hall, Englewood Cliffs, 1981.

[6] A. George and J. W. H. Liu. An implementation of a pseudoperipheral node finder.
ACM Transactions on Mathematical Software, 5(3):284–295, September 1979.

[7] S. L. Gonzaga de Oliveira, A. A. A. M. Abreu, D. T. Robaina, and M. Kischnhevsky. A
new heuristic for bandwidth and profile reductions of matrices using a self-organizing

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0441 010441-6 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0441

7

map. In O. Gervasi, B. Murgante, S. Misra, A. M. A. C. V Rocha, C. M. Torre,
D. Taniar, B. O. Apduhan, E. Stankova, and S. Wang, editors, The 16th International
Conference on Computational Science and Its Applications (ICCSA), LNCS, Part I,
v. 9786, pages 54–70, Beijing, 2016. Springer.

[8] S. L. Gonzaga de Oliveira, A. A. A. M. Abreu, D. T. Robaina, and M. Kischnhevsky.
An evaluation of four reordering algorithms to reduce the computational cost of the
jacobi-preconditioned conjugate gradient method using high-precision arithmetic (to
appear). International Journal of Business Intelligence and Data Mining, 2017.

[9] S. L. Gonzaga de Oliveira, J. A. B. Bernardes, and G. O. Chagas. An evaluation of
several heuristics for bandwidth and profile reductions to reduce the computational
cost of the preconditioned conjugate gradient method. In Proceedings of the Brazilian
Symposium on Operations Research (SBPO 2016), Vitória, Brazil, September 2016.
Sobrapo.

[10] S. L. Gonzaga de Oliveira, J. A. B. Bernardes, and G. O. Chagas. An
evaluation of low-cost heuristics for matrix bandwidth and profile reducti-
ons. Computational & Applied Mathematics, 2016, doi=10.1007/s40314-016-0394-9,
url=http://link.springer.com/article/10.1007%2Fs40314-016-0394-9.

[11] A. Kaveh and H. A. Rahimi Bondarabady. Ordering for wavefront optimization.
Computer & Structure, 78:227–235, 2000.

[12] Inc. The MathWorks. MATLAB. http://www.mathworks.com/products/matlab,
1994–2017.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0441 010441-7 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0441

