Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Grupo de Simetrias dos Espaços de Blocos de Niederreiter-Rosenbloom-Tsfasman

Luciano Panek¹

Centro de Engenharias e Ciências Exatas, UNIOESTE, Foz do Iguaçu, PR Nayene Michele Paião Panek²

Centro de Engenharias e Ciências Exatas, UNIOESTE, Foz do Iguaçu, PR

Resumo. Seja $P = (\{1, 2, ..., n\}, \leq)$ um conjunto parcialmente ordenado dado por uma união disjunta de cadeias de mesmo comprimento e $V = \mathbb{F}_q^N$ o espaço vetorial das N-uplas sobre o corpo finito \mathbb{F}_q . Seja $V = V_1 \oplus V_2 \oplus ... \oplus V_n$ uma soma direta de V, em blocos de subespaços $V_i = \mathbb{F}_q^{k_i}$ com $k_1 + k_2 + ... + k_n = N$, munido com a métrica de blocos ordenados $d_{(P,\pi)}$ induzida pela ordem P e pela partição $\pi = (k_1, k_2, ..., k_n)$. Neste artigo descrevemos o grupo de simetrias do espaço métrico $(V, d_{(P,\pi)})$.

Palavras-chave. Métricas de Blocos, Métricas Poset, Métricas de Niederreiter-Rosenbloom-Tsfasman, Simetrias.

1 Introdução

Seja \mathbb{F}_q^N o espaço vetorial das N-uplas definido sobre o corpo finito \mathbb{F}_q . Fixado um inteiro positivo k, um dos principais problemas da teoria dos códigos corretores de erros é determinar os subconjuntos de \mathbb{F}_q^N , contendo q^k elementos, com maior distância mínima possível. Entre as distâncias consideradas, as mais comuns são a distância de Hamming d_H e a distância de Lee d_L .

Em 1991 Niederreiter generalizou o problema descrito acima (ver [8]). Brualdi, Graves e Lawrence (ver [2], 1995) generalizaram o problema de Niederreiter definindo o conceito de métrica poset (abreviação de partially ordered set). Na sequência Feng, Xu e Hickernell (ver [4], 2006) introduziram o conceito de métrica de blocos, particionando o conjunto das posições das coordenadas de \mathbb{F}_q^N em famílias de blocos. Ambos os tipos de métrica são generalizações da métrica de Hamming, no sentido de que a última é obtida quando a ordem é anticadeia (no caso da métrica poset) ou os blocos são subespaços 1-dimensional (no caso da métrica de blocos). Em 2008, Alves, Panek e Firer (ver [1]), combinando as estruturas de blocos e poset, apresentaram uma generalização de ambos os conceitos, a chamada métrica de blocos ordenados.

Um caso particular das métricas poset (ou das métricas de blocos ordenados para blocos 1-dimensionais) é a métrica introduzida, independentemente, por Niederreiter em

¹luciano.panek@unioeste.br

 $^{^2}$ nayene.paiao@unioeste.br

2

1991 (ver [8]) e Rosenbloom e Tsfasman em 1997 (ver [12]), onde a ordem é uma união disjunta de cadeias de mesmo comprimento. Esta métrica tem atraído o interesse de vários pesquisadores por suas inúmeras aplicações, como observado por Park e Barg (ver [11]).

O grupo das simetrias lineares dos espaços métricos poset foi inicialmente descrito para algumas famílias de métricas poset: métricas de Niederreiter-Rosenbloom-Tsfasman [7]; métricas de ordens coroas [3]; métricas de ordens fracas [6]. Panek, Firer, Kim e Hyun (ver [10]) completam a descrição determinando o grupo de simetrias lineares para métricas poset quaisquer. Também em [1], Alves, Panek e Firer descrevem o grupo de simetrias lineares para a métrica de blocos ordenados. A descrição das simetrias (não necessariamente lineares) para métricas poset foi inicialmente estudada por Panek, Alves e Firer em [9] (para métricas de Niederreiter-Rosenbloom-Tsfasman) e posteriormente por Hyun em [5] (para ordens quaisquer). Neste trabalho descrevemos o grupo de simetrias em relação as métricas de blocos de Niederreiter-Rosenbloom-Tsfasman.

Na Seção 2 introduzimos os principais conceitos e definições utilizados no trabalho. Na Seção 3 estudamos o caso determinado por uma única cadeia (Teorema 3.1). Na última seção descrevemos o grupo de simetrias dos espaços de blocos de Niederreiter-Rosenbloom-Tsfasman (Teorema 4.1).

2 Espaços Métricos de Blocos Ordenados

Seja $[n] := \{1, 2, \ldots, n\}$ um conjunto finito contendo n elementos e seja \leq uma ordem parcial definida sobre [n]. Chamamos o par $P := ([n], \leq)$ de poset (abreviação de partially ordered set) ou conjunto ordenado ou ordem. Dizemos que k é menor do que j se $k \leq j$ e $k \neq j$. Um ideal em P é um subconjunto $I \subseteq [n]$ que contem todos os elementos que são menores ou iguais a algum dos seus elementos, isto é, se $j \in I$ e $k \leq j$, então $k \in I$. Dado um subconjunto $X \subseteq [n]$, denotamos por $\langle X \rangle$ o menor ideal que contem X, chamado de ideal gerado por X. Uma ordem sobre [n] é dita linear ou cadeia se quaisquer dois elementos são comparáveis, isto é, dados $i,j \in [n]$ temos que $i \leq j$ ou $j \leq i$. Neste caso, n é chamado de comprimento da cadeia e P pode ser rotulado de tal forma que $i_1 < i_2 < \ldots < i_n$. Para simplificar a notação, sempre assumiremos que a ordem linear P é dada por $1 < 2 < \ldots < n$.

Seja q uma potência de primo, \mathbb{F}_q um corpo finito contendo q elementos e $V:=\mathbb{F}_q^N$ o espaço vetorial N-dimensional das N-uplas sobre \mathbb{F}_q . Seja $\pi=(k_1,k_2,\ldots,k_n)$ uma partição de N: $N=k_1+k_2+\ldots+k_n$ com $k_i>0$. Para cada k_i seja $V_i:=\mathbb{F}_q^{k_i}$ o subespaço k_i -dimensional sobre \mathbb{F}_q e defina $V=V_1\oplus V_2\oplus\ldots\oplus V_n$, chamada de π -decomposição de V. Um vetor $v\in V$ pode ser escrito de forma única como $v=v_1+v_2+\ldots+v_n$ com $v_i\in V_i$ para cada $1\leq i\leq n$. Chamamos esta decomposição de π -decomposição de v. Dado uma ordem $P=([n],\leq)$, definimos o peso de blocos ordenados $\omega_{(P,\pi)}$ (ou simplesmente o (P,π) -peso) de um vetor não nulor $v=v_1+v_2+\ldots+v_n$ pondo

$$\omega_{(P,\pi)}(v) := |\langle supp(v) \rangle|$$

e $\omega_{(P,\pi)}(0) := 0$, onde $supp(v) := \{i \in [n] : v_i \neq 0\}$ é o π -suporte do vetor v e |X| é a cardinalidade do conjunto finito X. A estrutura de blocos é dita trivial quando $k_i = 1$

para todo $1 \le i \le n$. O (P, π) -peso induz uma métrica $d_{(P,\pi)}$ sobre V, chamada de métrica de blocos ordenados (ou simplesmente (P, π) -métrica):

$$d_{(P,\pi)}(u,v) := \omega_{(P,\pi)}(u-v).$$

O par $(V, d_{(P,\pi)})$ é um espaço métrico, chamado de espaço de blocos ordenados, ou simplesmente de (P,π) -espaço. Observamos que se π é trivial, então $d_{(P,\pi)}$ coincide com a métrica poset d_P introduzida por Brualdi, Graves e Lawrence em [2]. Agora se P é a ordem anticadeia (elementos distintos não são comparáveis entre si), então $d_{(P,\pi)}$ coincide com a métrica de blocos d_{π} introduzida por Feng, Xu e Hickernell em [4]. Se π é trivial e P é a ordem anticadeia, então $d_{(P,\pi)}$ coincide com a clássica métrica de Hamming d_H . A métrica de blocos ordenados $d_{(P,\pi)}$ foi introduzida por Alves, Panek e Firer em [1].

Uma simetria de $(V, d_{(P,\pi)})$ é uma bijeção $T: V \longrightarrow V$ que preserva distância:

$$d_{(P,\pi)}(T(u), T(v)) = d_{(P,\pi)}(u, v)$$

para todo $u, v \in V$. O conjunto $Symm(V, d_{(P,\pi)})$ de todas as simetrias de $(V, d_{(P,\pi)})$ é um grupo com a operação de composição de funções, chamado de grupo de simetrias de $(V, d_{(P,\pi)})$.

3 Espaços de Blocos Linearmente Ordenados

Seja $P = ([n], \leq)$ a ordem linear $1 < 2 < \ldots < n$, $\pi = (k_1, k_2, \ldots, k_n)$ uma partição de N e $V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$ a π -decomposição do espaço vetorial $V = \mathbb{F}_q^N$. Nesta seção descrevemos o grupo de simetrias do espaço de blocos ordenados $(V, d_{(P,\pi)})$. Esta descrição será essencial para a próxima seção, onde o grupo de simetrias dos espaços de blocos de Niederreiter-Rosenbloom-Tsfasman será caracterizado. Os resultados aqui são extensões naturais dos resultados obtidos para espaços de blocos de Niederreiter-Rosenbloom-Tsfasman com estrutura de blocos trivial (ver [9], Lemma 3.1, Lemma 3.2, Theorem 3.1, Corolary 3.1) e, por esta razão, omitimos as demonstrações. Encorajamos o leitor a consultar [9] para verificar os detalhes.

Começamos observando que, dados $u = (u_1, \ldots, u_n)$ e $v = (v_1, \ldots, v_n)$ em V,

$$d_{(P,\pi)}(u,v) = \max\{i : u_i \neq v_i\}.$$

Para cada $i \in \{1, 2, ..., n\}$, seja $F_i : V_i \oplus V_{i+1} \oplus ... \oplus V_n \to V_i$ a aplicação que é bijetora com respeito ao primeiro bloco V_i , isto é, dado $v_{i+1}, ..., v_n \in V_{i+1} \oplus ... \oplus V_n$, a aplicação $\widetilde{F}_{v_{i+1},...,v_n} : V_i \to V_i$ definida por

$$\widetilde{F}_{v_{i+1},\dots,v_n}\left(v_i\right) = F_i\left(v_i,v_{i+1},\dots,v_n\right)$$

é uma bijeção. Dado uma tal família de aplicações, definimos $T_{(F_1,F_2,\dots,F_n)}:V\to V$ por

$$T_{(F_1,F_2,\ldots,F_n)}(v_1,\ldots,v_n) = (F_1(v_1,\ldots,v_n),F_2(v_2,\ldots,v_n),\ldots,F_n(v_n)).$$

3

4

Teorema 3.1. Sejam $P = ([n], \leq)$ a ordem linear $1 < 2 < \ldots < n$ e $V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$ uma π -decomposição de V. O grupo $Symm(V, d_{(P,\pi)})$ das simetrias do espaço $(V, d_{(P,\pi)})$ é o conjunto de todas as aplicações $T_{(F_1, F_2, \ldots, F_n)}: V \to V$.

Temos que se $\widetilde{F}_{v_2,\dots,v_n}(v_1) = F_1(v_1,v_2,\dots,v_n)$ é uma bijeção para cada $(v_2,\dots,v_n) \in V_2 \oplus \dots \oplus V_n$, então $\widetilde{F}_{v_2,\dots,v_n}: V_1 \to V_1$ é uma permutação de V_1 para cada $(v_2,\dots,v_n) \in V_2 \oplus \dots \oplus V_n$. Denotando por S_m o grupo das permutações de um conjunto com m elementos, como $V = \mathbb{F}_q^N$ contém q^N elementos, se $V = V_1 \oplus V_2 \oplus \dots \oplus V_n$ é a π -decomposição de V e $\pi = (k_1, k_2, \dots, k_n)$, podemos identificar o grupo das funções $F: V_1 \oplus V_2 \oplus \dots \oplus V_n \to V_1$, tal que $\widetilde{F}_{v_2,\dots,v_n}$ é uma permutação de $V_1 = \mathbb{F}_q^{k_1}$ para cada $(v_2,\dots,v_n) \in V_2 \oplus \dots \oplus V_n$, com o produto direto $(S_{q^{k_1}})^{q^{N-k_1}}$. Agora podemos apresentar a estrutura de grupo de $Symm(V,d_{(P,\pi)})$:

Teorema 3.2. Sejam $P = ([n], \leq)$ a ordem linear $1 < 2 < \ldots < n$ e $V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$ uma π -decomposição de $V = \mathbb{F}_q^N$. Se $\pi = (k_1, k_2, \ldots, k_n)$, então o grupo de simetrias $Symm(V, d_{(P,\pi)})$ é isomorfo à sequência de produtos semi-direto

$$(S_{q^{k_1}})^{q^{N-k_1}} \rtimes \left(\dots \left((S_{q^{k_{n-1}}})^{q^{N-k_1-k_2-\dots-k_{n-1}}} \rtimes (S_{q^{k_n}})^{q^{N-k_1-k_2-\dots-k_{n-1}-k_n}} \right) \dots \right).$$

4 Espaços de Blocos de Niederreiter-Rosenbloom-Tsfasman

Nesta seção consideramos uma ordem $P=([m\cdot n],\leq)$ que é uma união disjunta de m cadeias P_1,P_2,\ldots,P_m de comprimento n. Identificamos os elementos de $[m\cdot n]$ com o conjunto de pares ordenados de inteiros (i,j), com $1\leq i\leq m,\ 1\leq j\leq n$, onde $(i,j)\leq (k,l)$ se, e só se, i=k e $j\leq_{\mathbb{N}} l$, onde $\leq_{\mathbb{N}}$ é a ordem usual de \mathbb{N} . Denotamos $P_i=\{(i,j):1\leq j\leq n\}$. Cada P_i é uma cadeia e todas elas são componentes conexas de $P=([m\cdot n],\leq)$.

Seja $\pi=(k_{11},\ldots,k_{1n},\ldots,k_{m1},\ldots,k_{mn})$ uma partição N. Dado um corpo finito \mathbb{F}_q e $V=U_1\oplus U_2\oplus\ldots\oplus U_m$, onde $U_i:=V_{i1}\oplus V_{i2}\oplus\ldots\oplus V_{in}$ e $\dim(V_{ij})=k_{ij}$ para todo $1\leq i\leq m,\ 1\leq j\leq n$, identificamos V com o conjunto das matrizes $\{(v_{ij}):v_{ij}\in V_i,1\leq i\leq m,\ 1\leq j\leq n\}$. O espaço V munido com a métrica induzida pela ordem $P=([m\cdot n],\leq)$ e pela partição π é chamado de espaço de blocos de Niederreiter-Rosenbloom-Tsfasman (ou simplesmente (m,n,π) -espaço). Se π é trivial, então $(V,d_{(P,\pi)})$ coincide com o espaço de Niederreiter-Rosenbloom-Tsfasman induzido pela métrica de Niederreiter-Rosenbloom-Tsfasman. Se n=1, então $(V,d_{(P,\pi)})$ coincide com o espaço de Hamming induzido pela métrica de Hamming d_H .

Seja $V = U_1 \oplus U_2 \oplus \ldots \oplus U_m$ como acima, chamado de decomposição canônica de V. Observamos que a restrição de $d_{(P,\pi)}$ a cada U_i é um espaço de blocos ordenados definido por uma ordem linear, e daí que cada U_i é isométrico ao espaço $(U_i, d_{[n]})$ com a métrica $d_{[n]}$ determinada pela cadeia $1 < 2 < \ldots < n$. Seja G_{in} o grupo de simetrias de $(U_i, d_{[n]})$. O produto direto $\prod_{i=1}^m G_{in}$ age sobre V da seguinte forma: dado $(T_1, \ldots, T_m) \in \prod_{i=1}^m G_{in}$ e $v \in V$,

$$T(v) := T_1(v_1) + T_2(v_2) + \ldots + T_m(v_m).$$

É fácil ver que $T(v) := \sum_{i=1}^{m} T_i(v_i)$ é uma simetria.

Seja S_m o grupo de permutações de $\{1,2,\ldots,m\}$. Chamamos uma permutação $\sigma \in S_m$ de admissível se $\sigma(i) = \sigma(j)$ implica que $k_{il} = k_{jl}$ para todo $1 \le l \le n$. O conjunto S_π de todas as permutações admissíveis é um subgrupo de S_m . Temos que o grupo S_π age sobre V como um grupo de simetrias: dado $\sigma \in S_\pi$ e $v = v_1 + v_2 + \ldots + v_m \in V$, definimos

$$T_{\sigma}(v) := v_{\sigma(1)} + v_{\sigma(2)} + \ldots + v_{\sigma(m)}.$$

Também é fácil ver que T_{σ} é uma simetria.

Seja $G_{(m,n,\pi)}$ o grupo de simetrias gerado por $\prod_{i=1}^m G_{in}$ e S_{π} . Assim como em [9] (Corollary 3.1), temos que:

Proposição 4.1. Seja $(V, d_{(P,\pi)})$ um (m, n, π) -espaço. Então $G_{(m,n,\pi)}$ é isomorfo ao produto semi-direto

$$G_{(m,n,\pi)} = \left(\prod_{i=1}^m G_{in}\right) \rtimes S_{\pi}.$$

Mostraremos agora que $G_{(m,n,\pi)}$ é exatamente o grupo de simetrias de $(V,d_{(P,\pi)})$.

Lema 4.1. Sejam $(V, d_{(P,\pi)})$ um (m, n, π) -espaço e $V = U_1 \oplus U_2 \oplus \cdots \oplus U_m$ a decomposição canônica de V. Se $\pi = (k_{11}, \ldots, k_{ij}, \ldots, k_{mn})$ e $T: V \to V$ é uma simetria tal que T(0) = 0, então para cada $1 \le i \le m$ existe um correspondente $1 \le j \le m$ tal que $T(U_i) = U_j$ e $k_{il} = \dim(V_{il}) = \dim(V_{jl}) = k_{jl}$ para todo $1 \le l \le n$.

Demonstração. Denotemos $V_{i1} \oplus V_{i2} \oplus \ldots \oplus V_{ik}$ por U_{ik} . Começamos mostrando que, para cada $1 \leq i \leq m$ existe um correspondente $1 \leq j \leq m$ tal que $T(U_{i1}) = U_{j1}$ e $k_{i1} = k_{j1}$.

Seja $v_i \in U_{i1}, \ v_i \neq 0$. Como $d_{(P,\pi)}(T(v_i),0) = d_{(P,\pi)}(v_i,0) = 1$, então $T(v_i)$ é um vetor de (P,π) -peso 1. Disto segue que $T(v_i) \in U_{j1}$ para algum $1 \leq j \leq m$. Se $v_i' \in U_{i1}, \ v_i' \neq v_i$ e $v_i' \neq 0$, então $T(v_i') = v_k$ para algum $v_k \in U_{k1}$ com $v_k \neq 0$, mas também $d_{(P,\pi)}(T(v_i), T(v_i')) = d_{(P,\pi)}(v_i, v_i') = 1$. Se $k \neq j$, então $d_{(P,\pi)}(T(v_i), T(v_i')) = d_{(P,\pi)}(v_j, v_k) = 2$. Daí que k = j e $T(U_{i1}) \subseteq U_{j1}$. Aplicamos agora o mesmo argumento para T^{-1} . Se $v_i \in U_{i1}, \ v_i \neq 0$, e $T(v_i) = v_j$ com $v_j \in U_{j1}$, então $T^{-1}(v_j) \in U_{i1}$ e consequentemente $T^{-1}(U_{j1}) \subseteq U_{i1}$. Assim $U_{j1} \subseteq T(U_{i1})$. Disto segue que $T(U_{i1}) = U_{j1}$. Temos que $k_{i1} = k_{j1}$ pois T é bijetora.

Provaremos agora por indução sobre k que, para cada s existe l tal que $T(U_{sk}) = U_{lk}$ e $k_{sj} = k_{lj}$ para todo $1 \leq j \leq k$ e para todo $1 \leq k \leq n$. Note que $U_{sn} = U_s$. Sem perda de generalidade, considere que s = 1, $P_1 = \{(1,1),\ldots,(1,n)\}$. Seja P_l uma cadeia começando em (l,1) tal que $T(U_{11}) = U_{l1}$ e suponha que $U_{1(k-1)}$ é levado por T em $U_{l(k-1)}$ com $k_{1j} = k_{lj}$ para todo $1 \leq j \leq k-1$. Seja $v = v_{11} + \ldots + v_{1k}, \ v_{1i} \in V_{1i}$, e seja $T(v) = u_1 + \ldots + u_m, \ u_i \in U_i$. Como $T(0) = 0, \ \omega_{(P,\pi)}(v) = \omega_{(P,\pi)}(T(v)) = \omega_{(P,\pi)}(u_1) + \ldots + \omega_{(P,\pi)}(u_m)$. Afirmamos que $T(v) = u_l$. Não podemos ter $u_l = 0$: neste caso, $\omega_{(P,\pi)}(v) = \sum_{j \neq l} \omega_{(P,\pi)}(u_j)$ e daí que, se $u_{11} \in U_{11}, \ u_{11} \neq 0$, com $T(u_{11}) = u_{l1}$,

$$k = d_{(P,\pi)}(u_{11}, v) = d_{(P,\pi)}(T(u_{11}), T(v)) = \sum_{j \neq l} \omega_{(P,\pi)}(u_j) + \omega_{(P,\pi)}(u_{l1}) = k + 1,$$

5

6

uma contradição. Logo $u_l \neq 0$. Seja $u_l = u_{l1} + \ldots + u_{lt}, u_{li} \in V_{li}$, e suponha agora que exista uma outra parcela $u_i \neq 0$. Então $k = \sum_j \omega_{(P,\pi)}(u_j) > \omega_{(P,\pi)}(u_l)$ e, consequentemente

t < k. Por indução, $T^{-1}(u_l)$ é um vetor em $V_{1(k-1)}$ com $\omega_{(P,\pi)}(T^{-1}(u_l)) < k$. Logo

$$k = d_{(P,\pi)}(T^{-1}(u_l), v) = d_{(P,\pi)}(u_l, T(v)) = \sum_{j \neq l} \omega_{(P,\pi)}(u_j) < k,$$

novamente uma contradição. Sendo assim, $T(v) \in U_{lk}$. Segue da hipótese de indução e do fato de que T preserva pesos que $T(v_{11} + \ldots + v_{1k}) = u_{l1} + \ldots + u_{lk}$, onde $v_{1k} \neq 0$ implica $u_{lk} \neq 0$. Consequentemente, $T(U_{1k}) = U_{lk}$. Como $k_{1j} = k_{lj}$ para todo $1 \leq j \leq k-1$ e T é uma bijeção, segue que $k_{1k} = k_{lk}$. Portanto $T(U_1) = U_l$ com $k_{1j} = k_{lj}$ para todo $1 \leq j \leq n$.

Lema 4.2. Seja $(V, d_{(P,\pi)})$ um (m, n, π) -espaço. Cada simetria de $(V, d_{(P,\pi)})$ que preserva a origem é um produto $T_{\sigma} \circ g$, com σ em S_{π} e g em $\prod_{i=1}^{m} G_{in}$.

Demonstração. Seja T uma simetria de $(V, d_{(P,\pi)})$ tal que T(0) = 0. Para cada $1 \le i \le m$ existe um $\sigma(i)$ tal que $T(U_i) = U_{\sigma(i)}$ com $k_{il} = k_{\sigma(i)l}$ para todo $1 \le l \le n$. Como T é uma bijeção, segue que $i \mapsto \sigma(i)$ é uma permutação admissível de $\{1, \ldots, m\}$. Definimos $T_{\sigma}: V \to V$ pondo $T_{\sigma(v)} := v_{\sigma(1)} + v_{\sigma(2)} + \ldots + v_{\sigma(m)}$ e então $T = T_{\sigma}(T_{\sigma}^{-1}T)$, onde $\sigma \in S_{\pi}$. Seja $g = (T_{\sigma}^{-1}T)$. Claramente $g(U_i) = U_i$, e $g|_{U_i}$ é uma simetria de V_i . Definindo $g_i := g|_{U_i}$ temos que $g = (g_1, \ldots, g_n)$ e, consequentemente $g \in \prod_{i=1}^m G_{in}$.

Teorema 4.1. Seja $(V, d_{(P,\pi)})$ um (m, n, π) -espaço. O grupo de simetrias de $(V, d_{(P,\pi)})$ é isomorfo ao produto semi-direto

$$\left(\prod_{i=1}^{m} G_{in}\right) \rtimes S_{\pi}.$$

Demonstração. Seja T uma simetria de $(V, d_{(P,\pi)})$ e seja v = T(0). A translação $S_{-v}(u) := u - v$ é uma simetria tal que $(S_{-v} \circ T)(0) = S_{-v}(v) = 0$. Segue do lema acima que $S_{-v} \circ T \in G_{(m,n,\pi)}$. A restrição de S_v a U_i é uma translação por v_i , e portanto uma simetria de U_i . Segue que $S_v \in \prod_{i=1}^m G_{in} \subset G_{(m,n,\pi)}$ e, consequentemente, $T = S_v \circ (S_{-v} \circ T)$ está em $G_{(m,n,\pi)}$. Logo $G_{m\cdot n}$ é o grupo de simetria $(V,d_{(P,\pi)})$. Pela Proposição 4.1, $G_{(m,n,\pi)}$ é isomorfo ao produto semi-direto $(\prod_{i=1}^m G_{in}) \rtimes S_\pi$.

5 Conclusões

Encerramos o trabalho reobtendo o grupo de simetrias dos espaços de Rosenbloom-Tsfasman [9] e apresentando o grupo de simetrias dos espaços de blocos.

Teorema 5.1. (i) Se $P = ([m \cdot n], \leq)$ é uma união disjunta de m cadeias de comprimento n e $V = \mathbb{F}_q^{mn}$, então o grupo de simetrias de (V, d_P) é isomorfo ao produto semi-direto $(G_n)^m \rtimes S_m$ com $G_n = (S_q)^{q^{n-1}} \rtimes (\dots ((S_q)^q \rtimes S_q) \dots);$

(ii) Se P é anticadeia e $\pi = (k_1, k_2, ..., k_m)$ é tal que $k_1 = ... = k_{m_1} = l_1, ..., k_{m_1+...+m_{l-1}+1} = ... = k_{m_1+...+m_l} = l_r \text{ com } l_1 > ... > l_r, \text{ então } Symm(V, d_{\pi}) = \left(\prod_{i=1}^m S_{q^{k_i}}\right) \rtimes \left(\prod_{i=1}^l S_{m_i}\right).$

Demonstração. Em (i) basta observar que somente as permutações de cadeias são admissíveis. Em (ii) apenas os blocos de mesma dimensão podem ser permutados. O resultado segue agora dos Teoremas 3.2 e 4.1.

Referências

- [1] M. M. S. Alves, L. Panek and M. Firer, Error-Block Codes and Poset Metrics, Advances in Mathematics of Communications, 2:95-111, 2008.
- [2] R. Brualdi, J. S. Graves and M. Lawrence, Codes with a poset metric, *Discrete Mathematics*, 147:57-72, 1995.
- [3] S. Cho and D. Kim, Automorphism group of crown-weight space, Eur. J. Combin., 27-1:90-100, 2006.
- [4] K. Feng, L. Xu and F. J. Hickernell, Linear error-block codes, *Finite Fields and Their Applications*, 12:638-652, 2006.
- [5] J. Hyun, A subgroup of the full poset-isometry group, SIAM Journal of Discrete Mathematics, 24-2:589-599, 2010.
- [6] D. Kim, MacWilliams-type identities for fragment and sphere enumerators, Eur. J. Combin., 28-1: 273-302, 2007.
- [7] K. Lee, Automorphism group of the Rosenbloom-Tsfasman space, Eur. J. Combin. 24:607-612, 2003.
- [8] H. Niederreiter, A combinatorial problem for vector spaces over finite fields, *Discrete Mathematics*, 96:221-228, 1991.
- [9] L. Panek, M. M. S. Alves and M. Firer, Symmetry groups of Rosenbloom-Tsfasman spaces, *Discrete Mathematics*, 309:763-771, 2009.
- [10] L. Panek, M. Firer, H. Kim and J. Hyun, Groups of linear isometries on poset structures, Discrete Mathematics, 308:4116-4123, 2008.
- [11] W. Park and A. Barg, The ordered Hamming metric and ordered symmetric channels, *IEEE Internacional Symposium on Information Theory Proceedings*, 2283-2287, 2011.
- [12] M. Yu Rosenbloom and M. A. Tsfasman, Codes for the m-metric, Probl. Inf. Transm., 33: 45-52, 1997.

7