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Abstract. Many algorithms that ensure second-order necessary optimality conditions were
developed in the literature. To the best of our knownledge, none of them guarantee Strong
Second-Order Necessary Condition (SSONC). Gould and Toint [5] showed that we do not
expect SSONC in the barrier method. In this paper, we argue by an example that the
same is true for the second-order augmented Lagrangian method introduced in [1]. This
reinforces the Weak Second-Order Necessary Condition as the appropriate condition for the
convergence analysis of second-order optimization algorithms.
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1 Introduction

In this section, we consider the optimization problem

min f(x) s.t. g(x) ≤ 0 (1)

where f : Rn → R and g : Rn → Rm are twice continously differentiable functions. Let
`(x, µ) be the Lagrangian function

`(x, µ) = f(x) +
m∑
i=1

µig(x)

where (x, µ) ∈ Rn × Rm+ . It is well known that under a constraint qualification, a local
minimizer x∗ of (1) satisfies the first order Karush-Kuhn-Tucker (KKT) necessary condi-
tions [4]. That is, there are multipliers µ∗ such that

∇x`(x∗, µ∗) = ∇f(x∗) +
m∑
i=1

µ∗i∇g(x∗) = 0,

g(x∗) ≤ 0, µ∗ ≥ 0

and µ∗i gi(x
∗) = 0, i = 1, . . . ,m.
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In this case, and under a suitable constraint qualification, x∗ also satisfies the Strong
Second-Order Necessary Condition (SSONC) [4]

dT∇xx`(x∗, µ∗)d ≥ 0 for all d ∈ C(x∗, µ∗)

where

C(x∗, µ∗) =

{
d ∈ Rn

∣∣∣∣ dT∇gi(x∗) = 0 for all i ∈ I(x∗) such that µ∗i > 0
dT∇gi(x∗) ≤ 0 for all i ∈ I(x∗) such that µ∗i = 0

}
and

I(x∗) = {j | gj(x∗) = 0}

is the set of the indices of the active constraints at x∗. Reciprocally, if a KKT point x∗

with associated multipliers µ∗ conforms to the Second-Order Sufficient Condition (SOSC),
i.e., if

dT∇xx`(x∗, µ∗)d > 0 for all d ∈ C(x∗, µ∗)\{0},

then x∗ is a strict local minimizer of (1) [4].

Many algorithms in the literature were developed in order to guarantee convergence to
points that satisfy second-order necessary conditions (see for example [2] and references
there in). Unfortunately, checking SSONC is an NP-hard [6] problem. Thus, it is com-
mon to deal with a less stringent condition, namely, the Weak Second-Order Necessary
Condition (WSONC). A KKT point x∗ with associated multipliers µ∗ satisfies WSONC if
∇xx`(x∗, µ∗) is positive semidefinite over

CW (x∗) =
{
d ∈ Rn | dT∇gi(x∗) = 0 for all i ∈ I(x∗)

}
.

The subspace CW (x∗) is independent of multipliers and C(x∗, µ∗) ⊂ CW (x∗) (this in-
clusion is strict; for example, in minx≤0 x

3 at the origin). Checking WSONC consists of
solving a quadratic programming problem, a computationaly feasible task. We note that
when we only have equality constraints, the analogues of C and CW coincide, and no fur-
ther analysis is necessary. This is the motivation to consider only inequality constraints
in (1).

One of the most important class of optimization algorithms to solve (1) are the aug-
mented Lagrangian methods. Auslander [3] showed that the classical barrier and the pure
quadratic penalty methods converge to points that satisfy WSONC if its iterates fulfills
SOSC for the subproblems. Gould and Toint [5] provided an example where the limit point
of the classical barrier method does not satisfy SSONC (naturally, only WSONC). That
is, we can not expect convergence to SSONC points with the barrier method. Thus, one
question is whether the same occurs with quadratic penalty-like methods. We are particu-
larly interested in the second-order augmented Lagrangian method developed in [2], named
Algencan-second. In this method, each iterate satisfies approximately a second-order
condition for the Lagrangian subproblem. The authors showed that under a suitable con-
straint qualification (which is weaker than the well known Linear Independence Constraint
Qualification – LICQ), the feasible limit points of Algencan-second fulfill WSONC.
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This papers is organized as follows. In Section 2 we briefly present Algencan-second
algorithm for (1). In Section 3 we give an example where SOSC for the subproblem is
valid at every iterate of Algencan-second method but its limit point does not satisfy
SSONC. Finally, conclusions are given in Section 4.

Notation. The symbol ‖·‖∞ will denote the sup-norm. If z ∈ Rn, the components of z+
are defined by (z+)i = max{0, zi}, i = 1, . . . , n. Also, Rq+ = {z ∈ Rq | zi ≥ 0, i = 1, . . . , q}.
We denote by λ0(A) the smallest eigenvalue of a symmetric matrix A.

2 Second-order augmented Lagrangian method

The Powell-Hestenes-Rockafellar (PHR) augmented Lagrangian associated to the prob-
lem (1) is defined by

Lρ(x, µ) = f(x) +
ρ

2

m∑
i=1

[(
gi(x) +

µi
ρ

)
+

]2
,

where (x, µ) ∈ Rn×Rm+ and ρ > 0. We define, for each x ∈ Rn and ε > 0, the approximate
ε-Hessian of Lρ (with respect to x) as

∇2
εLρ(x, µ) = ∇2f(x) +

m∑
i=1

(µi + ρgi(x))+∇
2gi(x) + ρ

∑
i∈Iε(x,µ,ρ)

∇gi(x)∇gi(x)T

where

Iε(x, µ, ρ) =

{
j

∣∣∣∣ 1
√
ρ

(µj + ρgj(x)) ≥ −ε
}
.

Observe that ∇2
0Lρ(x, µ) is the true Hessian of Lρ where it exists. At these points the

eigenvalues of∇2
εLρ give upper bounds to the eigenvalues of the true Hessian. Furthermore,

if the true Hessian of Lρ is semidefinite positive then ∇2
εLρ is also semidefinite positive.

We resume Algencan-second method for the problem (1) in Algorithm 1 below.
In order to guarantee the well-definiteness of optimization algorithms, a common as-

sumption is that the sequence of iterates belongs to a compact set, frequently ensured
by box-constraints on the original problem. Algencan-second algorithm was designed
to handle box-constraints. However, this requires a more sophisticated exposure that
is unnecessary for our purposes (for more details, see [2]). Hence, we simply assume the
following assumption that guarantees the well-definiteness of the algorithm presented here.

Assumption A1. The Lagrangian subproblem (2) always have a global solution, and
the sequence {xk} generated by Algorithm 1 belongs to a compact set.

The iterate xk in Step 2 of Algorithm 1 may be computed by the Gencan-second [2]
algorithm, a box-constrained solver based on an active-set strategy and in spectral pro-
jected gradient steps that is able to deal with directions of negative curvature.
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Algorithm 1 Algencan-second for problem (1)

Let µmax > 0, γ > 1 and 0 < τ < 1. Let {εk} be a sequence of positive scalars such that
limk→∞ εk = 0. Let µ1i ∈ [0, µmax], i = 1, . . . ,m, and ρ1 > 0. Initialize k ← 1.

Step 1. Find an approximate minimizer xk of the problem

min
x

Lρk(x, µk). (2)

The conditions for xk are
‖∇xLρk(xk, µk)‖∞ ≤ εk (3)

and
λ0

(
∇2
εk
Lρk(xk, µk)

)
≥ −εk. (4)

Step 2. Define

V k
i = max

{
gi(x

k),−µki /ρk
}
, i = 1, . . . ,m.

If k > 1 and max{‖g(xk)‖∞, ‖V k
i ‖∞} ≤ τ max{‖g(xk−1)‖∞, ‖V k−1

i ‖∞} define ρk+1 = ρk.
Otherwise, define ρk+1 = γρk.

Step 3. Compute µk+1
i ∈ [0, µmax], i = 1, . . . ,m. Take k ← k + 1 and go to the Step 1.

Remark 2.1. The tolerances εk may be different in (3) and (4), including the precision
for the approximate Hessian. For the sake of simplicity, we presented a simplified version
with all equal tolerances.

Remark 2.2. We can compute µk+1
i in the Step 3 of Algorithm 1 projecting µki +ρkgi(x

k)
into [0, µmax]. This is the way employed in the Algencan [1] implementation provided
by TANGO project (www.ime.usp.br/~egbirgin/tango).

As we already mentioned, feasible limit points of Algorithm 1 fulfill WSONC under a
suitable constraint qualification, for example, LICQ.

3 An example

Let us consider the quadratic problem

min
1

2
xTGx s.t. x ∈ Rn+ (5)

where G is the symmetric matrix

I − αzz
T

zT z
,

n ≥ 2, z = e− ne1, ei is the i-th canonical vector of Rn, e is the vector of all entries one
and

α >
n

n− 1
.
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This problem is very similar to that given in [5]. We observe that LICQ is valid in the
entire space Rn.

First, we will argue that the origin does not satisfy SSONC. The KKT conditions
for (5) are

Gx− µ = 0, xTµ = 0, x ≥ 0 and µ ≥ 0.

At x = 0, the unique corresponding multiplier is µ = 0. We have eT1 z = 1 − n, zT z =
n(n− 1) and thus

eT1∇2l(0, 0)e1 = eT1Ge1 = 1− α(eT1 z)
2

zT z
= 1− α (1− n)2

n(n− 1)
= 1− α(n− 1)

n
< 0.

As e1 ∈ C(0, 0) = {d | − eTi d ≤ 0, i = 1, . . . , n}, the origin does not satisfy SSONC.
From now on, we will analyze the application of Algorithm 1 on (5). The PHR aug-

mented Lagrangian takes the form

Lρ(x, µ) =
1

2
xTGx+

ρ

2

n∑
i=1

(
−xi +

µi
ρ

)2

+

.

Assumption A2 µi/ρ− xi > 0, i = 1, . . . , n.

If A2 is valid, then ∇xLρ(x, µ) = Gx− µ+ ρx, Iε(x, µ, ρ) = {1, . . . ,m} and

∇2
εLρ(x, µ) = G+ ρ

n∑
i=1

eie
T
i = G+ ρI. (6)

In this case, the matrix ∇2
εLρ(x, µ) will be positive definite for all ρ > 0 sufficiently large.

Furthermore, for these ρ we will have

∇xLρ(x, µ) = Gx− µ+ ρx = 0 ⇔ x = (G+ ρI)−1µ. (7)

Without loss of generality, we can assume that ρ > α − 1. Thus, by Shermann-Morrison
formula we will obtain

(G+ ρI)−1 =
[
(1 + ρ)I − αz

zT z
zT
]−1

=
1

1 + ρ
I +

αzzT

(1 + ρ)(1 + ρ− α)zT z

and thus

x =

(
1

1 + ρ

)
µ+

(
αzTµ

(1 + ρ)(1 + ρ− α)zT z

)
z. (8)

Assumption A3 µi = µ1 for all i, that is, µ = µ1e.

A3 implies zTµ = µ1(e
T e− neT1 e) = 0, and from (8) we have

x =

(
1

1 + ρ

)
µ. (9)
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We initialize Algorithm 1 with

µ0 = µ01e > 0, ρ0 > 0, x0 =
1

1 + ρ0
µ0,

and ρ0 large enough to ensure ρ0 > α − 1 and the positive definiteness of G + ρ0I. We
have

µ0i
ρ0
− x0i =

(
1

ρ0
− 1

1 + ρ0

)
µ0i > 0, i = 1, . . . , n,

that is, A2 is satisfied at the initial point. Thus, by (7) we obtain ∇xLρ0(x0, µ0) = 0 and
by (6), x0 satisfies SOSC for the Lagrangian subproblem. In the following iterations,

• µki −ρkxki = [1−ρk/(1+ρk)]µ
k
i > 0 and thus µk+1

i > 0 (see Remark 2.2). Inductively,
the expression (9) is valid at iteration k because assumptions A2 and A3 are valid
in the previous iteration and ρk ≥ ρ0 > α − 1. Consequently, ∇xLρk(xk, µk) = 0
by (7);

• as A2 is valid and ρk ≥ ρ0, ∇2
εLρk(xk, µk) = G + ρkI � 0. That is, SOSC for the

Lagrangian subproblem (2) is valid in all iterations of Algorithm 1;

• all feasible points satisfy LICQ, and thus we conclude that ρk → ∞. Otherwise
Algorithm 1 would converge to a limit point x∗ = ηe with η > 0, which is not a
KKT point. But this contradicts the convergence theory of augmented Lagrangian
methods [1, 2].

By the above discussion, we conclude that the sequence{
xk+1 =

1

1 + ρk
µk
}

generated by Algorithm 1 converges to the origin, which does not satisfy SSONC although
all the iterates fulfill SOSC for the subproblems.

Remark 3.1. x ≥ 0 may be treated as box-constraints in Algencan-second, and then
they will not be penalized. We argue that the example is still valid in this case. In fact, the
first order condition (3) will be established in an analogous way to deal with box-constraints
(see [1]). Also, the second-order condition can only differs from (4) by changing some
rows/columns of ∇2

εLρk(xk, µk) to respective rows/columns of identity matrix (see [2]).
Therefore, no new negative eigenvalues will appear.

4 Conclusions

We considered a PHR augmented Lagrangian method that, under mild assumptions,
converges to points satisfying the Weak Second-Order Necessary optimality Condition
(WSONC). We showed by an example that even this method can fail to obtain limits that
conforms to Strong Second-Order Necessary optimality Condition (SSONC). This is an
analogous result to the one obtained previously for the classical barrier method [5], and
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reinforce us to believe that there is no method that ensures SSONC. On the other hand,
this also reinforces that WSONC is the appropriate condition for the convergence analysis
of second-order optimization algorithms.
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