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Abstract. This work deals with the development and calibration of an epidemic model to
describe the 2016 outbreak of Zika virus in Brazil. A mathematical model with 8 differential
equations and 7 parameters is employed. Nominal values for the model parameters are
estimated from the literature. An inverse problem associated to the model identification
is formulated and solved. The calibrated model obtained presents realistic parameters and
returns reasonable predictions, with the curve shape similar to the outbreak evolution and
peak value close to the maximum number of infected people during 2016.
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1 Introduction

The Zika fever is an infectious disease caused by a homonymous flavivirus that has
surged in the last two decades as multiple epidemics around the world. The widespread
outbreaks of this vector-borne malady have been an international concern specially due to
a suggested association with newborn microcephaly and Guillain-Barré syndrome.

The Brazilian Ministry of Health confirms that the first autochthonous transmission
of Zika virus in Brazil happened around April, 2015, and has registered 130,701 confirmed
cases by the end of 2016 [14]. The development of control and prevention strategies for
the mass infection is a critical issue. A mathematical model able to predict the number
of infected people during the virus outbreak is an useful tool, which can be employed to
identify effective and vulnerable aspects on disease control programs. This work is one of
the results in a rigorous ongoing process of identification and validation of representative
models to describe Zika virus outbreaks in a Brazilian context [2,3], and aims at calibrating
a SEIR epidemic model with real data of the 2016 outbreak.
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2 Epidemic model for Zika virus dynamics

2.1 Model description

This work utilizes a variant of the Ross-Macdonald model for epidemic predictions,
separating the populations into a SEIR framework: susceptible (S(t)), those who are
uncontaminated and are able to become infected; exposed (E(t)), anyone that is carrying
the pathogen but is still incapable of transmitting the disease; infectious (I(t)), can spread
the pathogen and may display symptoms; and the recovered group (R(t)), which contains
whoever is no longer infected. The following nonlinear system of ordinary differential
equations governs the evolution of individuals through the SEIR groups.

dSh/dt = −βh Sh Iv , (1)

dEh/dt = βh Sh Iv − αhEh , (2)

dIh/dt = αhEh − γ Ih , (3)

dRh/dt = γ Ih , (4)

dSv/dt = δ − βv Sv Ih/N − δ Sv , (5)

dEv/dt = βv Sv Ih/N − (αv + δ)Ev , (6)

dIv/dt = αv Ev − δ Iv , (7)

dC/dt = αhEh , (8)

where the h-groups amass the number of humans at each stage of the model and the v-
groups signifies proportion of vectors; N is the total human population; 1/γ, the time that
a human is infectious; 1/δ, the vector lifespan; βh, the vector-to-human transmission rate
and βv the human-to-vector; 1/α is the time interval an individual spends on Eh (adopted
hereafter as equivalent to the time between being infected and exhibiting symptoms), h
for human’s and v for vector’s; and C(t) is the cumulative number of infectious people.

All susceptible individuals are treated as equally capable of being infected and the
recovered ones as completely immunized. Human demographical changes are not consid-
ered, and the vector population is maintained constant although variations on each vector
SEIR compartment are introduced via the δ rate. The vector is regarded as a hypotheti-
cal mosquito apt to being infected or infectious throughout all its lifetime and unable to
recover.

2.2 Nominal system response

The nominal values for the parameters of Eqs. (1)–(8) come from the related literature
concerning the infection, the Aedes aegypti mosquito (main vector for Zika in Brazil),
vector-borne epidemic models and reports by health and government agencies. Brazil had
around N = 206× 106 people by July, 2016 [7]. The 1/αv is 15 days [1]; this value agrees
with statistical confidence intervals (CI) presented in other works (95% CI: 4.4–17) [6]. A
systematic review of the literature [9] suggests that 95% of people infected by the Zika
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virus who develop symptoms will do so within 11.2 days of infection (95% CI: 7.6–18.0) and
will have no detectable virus in the blood by 18.9 days after infection (95% CI: 13.6–79.4).
The value 1/αh = 11.2 is compatible with the range of 3–12 days recommended in multiple
sources [8, 15]. Considering the assumption that the infectiousness in Zika infection ends
1.5–2 days before the virus becomes undetectable [4,6], the chosen 1/γ is 18.9−1.5 = 17.4.
As for 1/δ, “the adult stage of the mosquito is considered to last an average of eleven days in
the urban environment” [12], also consistent with biological studies about the species [11]
and usual life expectancy for the vector in Rio de Janeiro [5]. Finally, 1/βh and 1/βv have
been estimated in the literature [4] as an average of 11.3 days (95% CI: 8.0–16.3) and 8.6
days (95% CI: 6.2-11.6), respectively.

Proper evaluation of the dynamic system underlying the SEIR epidemic model requires
setting the values of its variables at t = 0, established as the first epidemiological week
(EW) of 2016. The following are the assumptions considered in this analysis. Sh(0) = N ,
Sv(0) = 1, Eh(0) = Ih(0), Ev(0) = Iv(0), C(0) = Ih(0), and Rh(0) = 0. The value of Ih(0)
is taken as 4,272, corresponding to the number of Zika fever confirmed cases in Brazil on
the first EW of 2016 [13]. As for Iv(0), repetitive manual estimations were tried until
the resulted time series of Ih presented reasonable values compared to the real data. It
became clear that the system response is very sensible to Iv(0), as slight variations in its
value are required to achieve feasible results. In the process of choosing its value, the
matching of the Ih curve’s peak to the amplitude of infection is also a priority, since this is
the main interest region for evaluation of the outbreak. Viable Ih curves with the nominal
parameters were possible around Iv(0) = 6.5× 10−5. Figure 1 presents such configuration
on a epidemiological week temporal domain consisting of one to fifty-two weeks (7 to 365
days), compared with real data of the outbreak [13] depicted by the red dots.
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Figure 1: Model-predicted Ih(t) (curve) and number of confirmed cases in each EW [13] (dots).

The given Ih curve clearly overestimates the infection numbers. Nevertheless, the
general shape of Ih do provide qualitative information about the evolution of the infection,
as well as predictions for the peak value in the same order of magnitude than that of the
empirical data and its time of occurrence with a less than two weeks error. This qualitative
agreement suggests that the model predictions may be closer to the reference values if more
accurate parameter values were used.
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3 Calibration of the epidemic model

3.1 Calibration method and numerical experiments

Given initial conditions and a set of parameters, represented by the pair (x0,p), it
is possible to compute by means of numerical integration the model response x(t) of the
continuous-time dynamical system of section 2, from which a scalar observable φ(x0,p, t)
is obtained. In this manner, the calibration of the model consists in finding a set of
parameters p∗ such that

p∗ = arg min
p


M∑
n=1

∣∣∣yn − φ (x0,p, tn)
∣∣∣2
 , (9)

where y1, y2, · · · , yM are M system observations (reference data) assigned to the {tn}Mn=1

time instants. This is the associated inverse problem.
The method of Levenberg-Marquardt (LM) is employed here to numerically approx-

imate a solution for the inverse problem. Its basis resides in the linear approximation
φ(x0,p + h, t) ≈ φ(x0,p, t) + Jh , where J = ∂φ/∂p is the Jacobian matrix at p, and h a
small perturbation. Starting at an initial guess, the method produces a series of vectors
vectors p(1), p(2), . . . , that converge towards a local minimizer p∗ for φ. The rth iteration
is defined by (A(r)+λ(r)I)h(r) = g(r) [10], where A = JTJ, g = JT

(
y − φ(x0,p, t)− Jh

)
,

and the scalar λ is a Lagrange multiplier that controls both the magnitude and direction
of the step size correction h. A λ equal to zero implies that the direction of h is identi-
cal to that of the Gauss-Newton method, and as λ → ∞, h tends towards the steepest
descent method direction with its magnitude tending to zero. Thus, λ can be controlled
to ensure descent even when second-order terms are encountered, which would otherwise
restrict the efficiency of the Gauss-Newton method. The parameter vector at each step,
p(r+1) = p(r) + h(r), leads to a new sum of squares in Eq.(9), and it is essential to select
λ such that this sum is strictly smaller than the previous one. A sufficiently large λ that
ensures this condition is met always exists, unless p(r) is already at a minimum [10].

Variations of a single parameter via the LM algorithm, while maintaining the others
constant, revealed that the Ih(t) response of the model was significantly sensible to the βh
and βv rates, being largely more affected by βh. Next, a two-varying-parameters attempt
was conducted: most combinations did not bring satisfactory results, to the extent that
some pairs of parameters could not even be computed in the time dedicated to the analysis,
e.g (αh, αv), probably because of inefficient initial guesses or high computational cost.
Besides, βh and βv seemed to control the quality changing of the considered curve, meaning
the accompanying parameter would vary relatively less, proving the pair to be the best
one for fitting purposes. Three-way-varying attempts were made, but usually would result
not computable or giving in to the referred control parameters.

3.2 Calibration results

Figure 2 presents the best result for the Ih curve fitting problem using the nominal
parameters, obtained by singly varying βv via the LM algorithm. The βv value for the
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initial guess, the parameters held constant and the initial conditions are the same as
described in section 2.2. The resulting 1/βv that graphs the curve is 15.5 days.
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Figure 2: Calibrated time series of Ih(t) using the nominal parameters.

It is clear in Figure 2 that the system response Ih is a reasonable prediction of the
outbreak: the general shape of the infection evolution is attained, the curve’s peak and
empirical data maximum value differ only by a couple hundred of individuals, and all
parameters and initial conditions are within realistic possibilities.

Another result to the inverse problem is presented, considering again the fitting of the
Ih curve. The chosen values for this second set of parameters are the product of comparing
the empirical data with multiple iterations of the numerical strategy, but lacking the
caution for the possibility of unrealistic measures for the parameters. The initial conditions
for the numerical integration in this analysis follow the same assumptions presented in
section 2.2, excepting the Iv(0) = Ev(0) hypothesis, since the values of these are now the
result of an additional heuristic process of calibration: successive applications of the LM
algorithm were performed while manually changing the values of Iv(0) and Ev(0) at each
application, searching for the best fit of the curve’s peak to the field data. Figure 3 presents
the most satisfactory result obtained through this analysis, utilizing a βh variation in the
LM method. The parameters maintained constant and the βh initial guess used in this
calibration process to graph Figure 3 are summarized in Table 1, along with the values of
Iv(0) and Ev(0). The resulting βh after the LM algorithm is 0.0127 days−1.

Table 1: Parameters, Iv(0) and Ev(0) used for Figure 3. The βh value is the initial guess for the

LM algorithm. The remaining values are the same ones from section 2.2.

αh αv γ δ βh βv Iv(0) Ev(0)

value 1/12 1/17 1/8.8 1/25 1/16.3 1/11.6 15× 10−5 135× 10−5

unit days−1 days−1 days−1 days−1 days−1 days−1 — —

The curve in Figure 3 presents a better calibration of the model according to the em-
pirical data, since the peak time of the Ih curve is significant closer to the epidemiological
week that registered the maximum number of infected people. However, this result comes
at the cost of physical meaning in the parameters, because 1/βh = 78.7 days for the time
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between a mosquito being infected and it infecting a human is certainly unrealistic.
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Figure 3: Calibrated time series of infectious number of humans using parameters from Table 1.

4 Final remarks

A SEIR epidemic model to describe the dynamics of the 2016 Zika virus outbreak in
Brazil is developed and calibrated in this work. Nominal parameter quantities are selected
from the related literature. The calibration process is done through the solution of an
inverse problem with the aid of the Levenberg-Marquardt method, used to pick the best
parameter values that would fit the curve “number of infectious people per week” into the
disease’s empirical data, thus calibrating the model. Results within realistic values for
the parameters are presented, stating reasonable predictions with the curve shape similar
to the outbreak evolution and proximity between the estimated peak value and data for
maximum number of infected during 2016. Improved fitting is also achieved via convenient
choice of parameters and initial conditions during the numerical and heuristic process
regarded in the analysis, but at the expense of physical meaning of such parameters.

This work is only the first step in a long project of modeling and prediction of epidemics
related to the Zika virus in the Brazilian context. In future works, the authors intend to
analyze the efficacy of other epidemic models (e.g. SIR, MSIR, etc), and improve the
calibration process by means of a Bayesian updating rule to attack the inverse problem,
turning it more robust by taking into account the uncertainties underlying the model
and its parameters. The use of statistical methods to choose the most appropriate model
within a set of validated ones is also part of the plans.
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