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Abstract. Home-Away Assignment problems are naturally cast as quadratic programming
models in binary variables. In this work we compare alternative formulations. First, we
propose another formulation by manipulating their special structure to obtain versions with
1/4 of the original size. By linearizing the quadratic objective function, we get two more
alternative models to be compared with the quadratic ones. Numerical experiments exhibit
the characteristics of each model.
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1 Introduction

Several problems in sport scheduling have been focus of attention in the Opera-
tional Research community. One of them, the Home-Away assignment problem (HA-
Assignment) assign the label home (H) or away (A) to each match of a double round
robin tournament, allowing that some decision criteria is achieved (see [2], or [3]). Some
of these criteria involves minimizing the total traveling distance of the teams, or minimiz-
ing the number of breaks [2,9]. Models dealing with HA-Assignment problems have been
proposed, most of them as linear integer programs [2, 3, 9], or as MIN-RES-CUT prob-
lems [6,8], among others. We propose integer linear and quadratic formulations based on
cuts over a graph, but in a different flavor if compared with MIN-RES-CUT in [8].

In the sequel we introduce, like in [8] the mathematical definition of the problem.
Through this paper, we deal with a double round-robin tournament with a pair number
(2n) of teams. In a round robin tournament each team plays every other team twice, once
at home and the other away. A slot, or round, is a date where all the teams play. The
number of slots is 2(2n−1), and each team has its home and each match is held at the home
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of one of the two playing teams. A timetable is a matrix T whose rows are indexed by a set
of teams T = {1, 2, . . . , 2n}, and columns by a set of slots (rounds) S = {1, 2, . . . , 4n− 2}.
Each entry of a timetable, say τ(t, s)((t, s) ∈ T × S), shows the opponent of team t in
slot s. A timetable T should satisfy the following conditions: for each team t ∈ T , the
t-th row of T contains each element of T\{t} exactly twice; and for any (t, s) ∈ T × S,
τ(τ(t, s), s) = t. Generating timetables has been focus of attention of some works in sport
scheduling (see [3,5,7]). It is an easy task randomly generate timetables. If some matches
are fixed in advance, the work becomes harder ( [7]).

A home-away assignment is a matrix whose rows are indexed by T , and the columns
by S. Each entry of the HA-assignment, say ats((t, s) ∈ T × S), is either ‘H’ (home) or
‘A’ (away), according to the status of team t at round s. Given a timetable T , an HA
assignment A = (ats)((t, s) ∈ T × S) is said to be consistent with T if it satisfy (C1):
∀(t, s) ∈ T × S, {ats, aτ(t,s)s} = {A,H}, and (C2): ∀t ∈ T , if τ(t, s) = τ(t, s′) and s 6= s′

then {ats, ats′} = {A,H}. A schedule of a round-robin tournament is defined as a pair
(T ,A) of a timetable and a HA-assignment consistent with the timetable.

Our decision making is as follows: given a fixed timetable T , find a HA-assignment A.
consistent with T , according to some criteria. In our case, based on a quadratic objective
function in binary variables.

Given a timetable T and the index set T × S, we construct a partition of the indices
according to the following observation: For each (t, s) ∈ T × S, there exist unique indices
(t′, s′) ∈ T ×S, such that the indices in the set {(t, s), (t, s′), (t′, s), (t′, s′)} are related each
other, and isolated from the rest of the indices. t′ = τ(t, s) is the team which plays with
t in slot s, and s′ is the slot where the two teams plays again. Thus we can partition the
index set T × S into K = n(2n − 1) subsets. A procedure can be defined to assign to
each index (t, s) ∈ T × S labels γts = [k, j] with k = 1, . . . , n(2n − 1) and j = 1, 2, 3, 4,
in a such way that γtksk = [k, 1], γtks′k = [k, 2], γt′ksk = [k, 3] and γt′ks

′
k

= [k, 4]. Let us

define the set K(k) = {(t, s) ∈ T × S : γ1ts = k} Clearly |K(k)| = 4, It is clear that for
k1 6= k2, K(k1) ∩ K(k2) = ∅, since each component is labeled once. This last observation

also explains that T × S = ∪n(2n−1)k=1 K(k), so we have our partition.

The remainder of this article is organized as follows. In the next section we describe
the integer quadratic programming model; then we propose the procedure to reduce the
problem size, and later, the linear versions are written. In section 3 we offer numerical
results which compare the solver performance in each model. The last section is devoted
to conclusion and final remarks.

2 Optimization models

In this part we model the consistency C1-C2 constraints of the HA-assignment problem
as linear equations in binary variables. let us consider the undirected graph G = (V,E)
where the index set is V = {vts : (t, s) ∈ T ×S}, and the edges E = {(vts, vts′), (vts, vτ(t)s),
(vts′ , vτ(t)s′), (vτ(t)s, vτ(t)s′) : (t, s) ∈ T ×S}. Consider also the partition {K(k)}n(2n−1)k=1 de-
fined in the section above. Associated to each entry inK(k) = {(tk, sk), (tk, s′k), (t′k, sk), (t′k, s′k)}
we denote the binary 0− 1 variables ytksk , ytks′k , yt

′
ksk

, and yt′ks
′
k
. Each variable yts repre-
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sents an entry on the timetable, and it value will construct the HA-assignment A in such
way that if yts = 0, then ats = H, and the case yts = 1 imply ats = A. The following linear
constraints in binary variables model the conditions C1-C2:

ytksk + yt′ksk = 1

ytksk + ytks′k = 1

−ytksk + yt′ks
′
k

= 0.

(1)

For k = 1, . . . , n(2n − 1), at each group k the first equation means that only one of
the teams plays at home in slot sk. The second one establishes that team tk should play
alternatively at home and away in slots sk and s′k; and the third one ensures that if the
first team plays at home (away) at the first slot then the second team should be home
(away) in the second match between them. Now, for k = 1, 2, . . . , n(2n−1), the equations
(1) provide a system of equations of the form Ay = b where

A =


A1

A2

. . .

An(2n−1)

 , b =


b1
b2
..
.

bn(2n−1)

 , Ak =

 1 1 0 0
1 0 1 0
−1 0 0 1

 and bk =

 1
1
0

 .
Note that the imposed order in the “block diagonal” components of A, determined by the
k = 1, . . . , n(2n− 1) groups is different from the natural order provided by the set T × S.

Some of the popular decision criteria that have been used to choose HA-assignments,
like minimizing the total traveling distance (see [2,3]), or minimizing the number of breaks
[4, 6], leads to quadratic functions on y to be minimized. Denote by l(y) = cT y + 1

2y
THy

our objective function, where c and H are chosen according to the specific chosen criteria.
Our integer program with linear constraints and quadratic objective function becomes

Minimize l(y) = cT y + 1
2y

THy
subject to Ay = b

y ∈ {0, 1}4n(2n−1)
(2)

This formulation shares the same problem size with the one in [8], namely O(4n(2n− 1)).
By noting that all the variables in the group K(k) are determined by fixing one of such

variables, we can build a reduced model with 1
4 of the original size. In fact, by equations

(1) we have  yt′ksk
ytks′k
yt′ks′k

 =

 1
1
0

−
 1

1
−1

 ytksk = bk −Atkskytksk .

Denoting by zk = ytksk we can write all the variables y in function of z ∈ {0, 1}n(2n−1).
For each k (k = 1, . . . , n(2n− 1)), we define the following subsets of the index set T × S:
B(k) = {(tk, s′k), (t′k, sk), (t′k, s′k)} and N(k) = {(tk, sk)}.

Proposição 2.1. Consider the sets B = ∪n(2n−1)k=1 B(k) and N = ∪n(2n−1)k=1 N(k). Then
{B,N} is a partition of the index set T × S.

Proof. : In fact,

B ∪N = (∪n(2n−1)k=1 B(k)) ∪ (∪n(2n−1)k=1 N(k))

= ∪n(2n−1)k=1 K(k) = T × S.
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On the other hand, the fact that for k 6= k′, K(k) ∩ K(k) = ∅, leads to B(k) ∩N(k′) = ∅
for all k 6= k′. So,

B ∩N = (∪n(2n−1)k=1 B(k)) ∩ (∪n(2n−1)k=1 N(k))

= ∪n(2n−1)k=1 (B(k) ∩N(k))

for any k, B(k) ∩N(k) = ∅ by definition, leading B ∩N = ∅.

By using the partition above, our variables can be rewritten as follows: yB = b−ANz,
and yN = z, which in turn define the linear transformation Y : Rn(2n−1) → R4n(2n−1), by
Y(z) = y . The objective function l(y) becomes

l̄(z) = l(Y(z)) = ā+ c̄T z +
1

2
zT H̄z,

where ā = cTBb+bTHBBb; c̄ = (c−ATNcB−2ATNHBBb−2HNBb)
T and H̄ = [ATNHBBAN +

ATNHBN +HNBAN ]. Our equivalent reduced model is:

Minimize l̄(z) = ā+ c̄T z + 1
2z
T H̄z

subject to z ∈ {0, 1}n(2n−1), (3)

which is a 0-1 quadratic programming with 1
4 of the number of variables, compared with

problem (2). The fact that this formulation avoid constraints other than the binary´s,
makes it suitable for using some metaheuristics, like genetic algorithms, without the care
of generating feasible solution populations. The price we pay for using the simplification
is the fill-in effect on the matrix H̄.

Motivated by the existence of robust solvers and the simplicity of linear programming,
ti is desirable whenever it is possible, to reformulate combinatorial programs into integer
linear programs. When there are quadratic relationships between binary variables, this
is always possible. One suitable linear formulation for a quadratic model with binary
variables replaces each quadratic term say hijxixj , by a linear term hijxij , incorporating
the following linear constraints into the original model

−xij + xi + xj ≤ 1
xij − xi ≤ 0
xij − xj ≤ 0
xij , xi, xj ∈ {0, 1}.

The effect is to enforce xij to be 1 only if both xi and xj are one, otherwise xij should
be 0. This kind of transformation add to the model one extra binary variable for each
quadratic term, that is if the problem has m variables, then potentially m2 new binary
variables should be incorporated. Fortunately, the quadratic relationships in our model
only appear in consecutive slots, so, the number of new variables/constraints is O(m). By
using this kind of transformation, the problem 2 is equivalently written as

Minimize l(y, w) = cT y + rTw
subject to Ay = b

Cy +Dw ≤ d
(y, w) ∈ {0, 1}4n(2n−1) × {0, 1}2n(4n−3).

(4)
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The price we pay for linearization is to add extra variables and constraints to the model.
A similar linearization is made in the simplified version:

Minimize l̄(z, w) = ā+ c̄T z + r̄Tw
subject to C̄z + D̄w ≤ d

(z, w) ∈ {0, 1}n(2n−1) × {0, 1}n2(2n−1)2 ,

(5)

which is a linear integer program with potentially more variables (paying the price of fill-in
the quadratic form). Other choices for linearizing are possible. For instance, in [9] a linear
relaxation for the problem 2 was proposed, in the case of minimizing the total traveling
distance in a single round robin tournament. They propose adding continuous variables
instead, obtaining a relaxation which approximate the quadratic model.

3 Numerical Results

Four different integer programming formulations for the same problem are solved with
simulated data: two quadratic programs with linear objective constraints (2) and (3),
and two integer linear programs (4) and (5). All computations were performed on a PC
Intel(R) core(TM) i7-3632 QM, 2.20 GHZ, 64 bits. At the first experiment we fix the

Table 1: Runtime for the linear and quadratic models fixing the timetable
Quadratic fixing timetable Linear fixing timetable

full reduced full reduced
2n mean SD mean SD mean SD mean SD

4 0.02768 0.01198 0.02247 0.01144 0.07063 0.00445 0.26672 0.62680
6 0.09818 0.01719 0.10523 0.03064 0.18222 0.09887 0.20801 0.09900
8 0.29231 0.07935 0.32632 0.12838 0.54525 0.28502 0.68075 0.42887
10 1.14851 0.29057 1.17092 0.30648 2.75070 0.82891 3.52782 1.07226
12 6.92692 0.74739 6.68803 1.08223 8.08235 2.47076 12.3484 1.84931
14 10.4368 0.99115 9.95315 0.89028 17.2353 3.84266 26.0670 9.45421
16 15.1239 1.65025 13.8831 1.45535 141.171 301.716 1890.36 2953.40
18 20.6103 1.86102 21.6154 7.18129
20 50.1043 21.6128 60.6731 22.7746

objective function and solve problems with 10 different randomly generated timetables,
for each problem size n, with the objective of exploring the performance of the solver
in a variety of configurations (timetables). Even sharing the same objective function
for each n, we solve 10 distinct problems, because different timetables leads to different
instances.For the second experiment we fix a timetable, and then we solve the problem
for 10 different objective functions, for each problem size (single configuration).We solve
HA-assignment problems for a par number of teams, between 4 and 20. Since our objective
is to compare the formulations for the problem, we use a non commercial solver which
deal with both, linear and quadratic integer programs, namely SICP [1]. In table 1 we
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Table 2: Runtime for the linear and quadratic models fixing the objective function
Quadratic fixing OF Linear fixing OF

full reduced full reduced
2n mean SD mean SD mean SD mean SD

4 0.01881 0.00349 0.02049 0.00817 0.07151 0.00443 0.06999 0.00469
6 0.10556 0.03898 0.09833 0.02711 0.24210 0.10551 0.21468 0.08341
8 0.22068 0.06098 0.24719 0.07874 0.72274 0.30959 0.58631 0.40193
10 1.02054 0.30153 1.15223 0.54655 2.55786 1.35314 3.15127 1.08560
12 6.27446 1.73542 6.07395 1.71097 6.31574 1.45673 9.04688 2.50039
14 10.9502 1.57499 9.91357 0.59958 18.4189 4.30626 125.277 286.680
16 14.5375 1.38106 13.5211 1.30986 131.309 306.120 903.701 306.196
18 21.3364 1.86914 21.9286 6.80267
20 60.8347 19.6424 41.4042 22.7594

present mean and standard deviation for the runtime, in the instances where the objective
function is fixed. The first four columns show results for the full and reduced size quadratic
models (2) and (3), while the last four columns are about the linear models (4) and (5).
As can be expected, the running times for the reduced version in the quadratic models
are consistently smaller. Studying the linear versions, we show results for n from 2 to
8 due to the time consuming of larger problems. Observe that while in small problems
(n = 2 to 6) the reduced version behaves better than the full size, for larger problems
this advantage is lost. This fact is explained by the multiplication effect of the binary
variables. Another comparison is between the quadratic models vs linearized models. We
use the same solver for quadratic and linear binary programs with the intent of reducing
the effect of using particular solvers when comparing the models. Now we shall study
table 2, which provides runtime for our integer quadratic and linear programs, with full
and reduced size configurations, but fixing the structure (fixing a timetable). In each
case we solve for 10 different objective functions, for each problem size. There is no clear
evidence of advantage in choosing the reduced version. Sometimes is faster and in other
times slower. The comparison between the quadratic and linear models also suggest that
quadratic models are stronger.

4 Conclusion

In this work we study the effect that different integer linear and quadratic equivalent
formulations for the HA-assignment problem have over the solver’s performance. By ma-
nipulating the special structure of the constraints, we propose a quadratic formulation
with 1/4 of the original size. Then we linearize both of the above formulations, obtaining
two more versions.

We compare the formulations by showing the runtime of the solver SCIP, in each
version. For the set of problems with the same structure (timetable) we observe, as can be

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0311 010311-6 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0311


7

expected, that the reduced versions behave better for the quadratic formulations. We also
note that the quadratic version behaves much faster than the linear ones. This shows that
even the linear models are equivalent to the quadratic ones, they make the solver behave
worst, due to the multiplication of the number of variables. This fact provides evidence
that using the model in its natural form sometimes brings advantages.

In [8] a SDP relaxation was proposed for HA-assignment problems, based on a MIN-
RES-CUT modeling. The problem (2) provides a quadratic programming model in binary
variables which lead to a different SDP formulation, which we are addressing in in an
ongoing work.
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[4] Elf, M., Jünger, M and Rinaldi, G.: ”Minimizing breaks by maximizing cuts”; Oper-
ations Research Letters, 31 (2003) 343–349.

[5] Kendall, G., Knust, S., Ribeiro, C. and Urrutia, S.: “Scheduling in sports: An
annotated bibliography”. to appear

[6] Miyashiro, R. and Matsui, T.: “Semidefinite programming based approaches to the
break minimization problem”. Computers and Operations Research (to appear).

[7] Ribeiro C. Sport Scheduling: a tutorial on fundamental problems and applications.
Department of Computer Science Universidade Federal Fluminense, Brazil, 2010.
http://www.ic.uff.br/~celso/artigas/sport-scheduling

[8] Suzuka, A., Miyashiro, R., Yoshise, A. and Matsui, T. Semidefinite Programming
Based Approaches to Home-Away Assignment Problems in Sports Scheduling. Math-
ematical Engineering Technical Reports, Department of Mathematical Informatics,
The University of Tokyo. Japan.
http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

[9] Trick, M. A Schedule-then-Break Approach to Sport Timetabling GSIA, Carnegie
Mellon, Pittsburgh
http://mat.gsia.cmu.edu

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0311 010311-7 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0311

