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Abstract

We present a simple numerical method based on a Lagrangian-Eulerian framework for ap-
proximate solutions of nonlinear balance law problems. This framework has been used for
numerically solving partial differential equations of several types, such as hyperbolic conser-
vation laws [3, 8], balance laws problems [4]. As in [3, 5] the mass conservation takes place
in the space-time volume Dn

j , and this region in the form of [3] is used to define naturally
a balance law. This balance law is the central idea to build a efficient numerical method to
approximate solution to balance law problems. Verification of the technique is also made by
comparison with analytical solutions when they are available.

Keywords. hyperbolic balance laws, Lagrangian-Eulerian, Finite Volume Methods

1 Introduction

We propose a first order high-resolution three point numerical scheme based on a
Lagrangian-Eulerian framework for numerically solving nonlinear balance law problems.
The Lagrangian-Eulerian approach is a promising tool for numerically solving partial dif-
ferential equations of several types. Recently, in [2,3,8] such ideas were extended to a wide
range of nonlinear purely hyperbolic conservation laws and balance laws scalar and sys-
tems. Here, we make use of polynomial reconstruction ideas into the Lagrangian-Eulerian
novel approach, but keeping the scheme simple, fast and without any strong restriction
over the source term other than integrability on the finite volume. As in [2,3,8] the hyper-
bolic part of balance law is written in a space time divergence form so that the inherent
conservation properties of the hyperbolic operator are used efficiently to build a numerical
method to hyperbolic balance law problems [5]. Such framework presents an interesting
property of being rather independent of a particular structure of the source terms. Our
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goal on the current work is two-fold: 1) to present the novel high-resolution Lagrangian-
Eulerian three point numerical scheme for general balance laws, and 2) the application
of the new scheme to a wide range of nonlinear balance laws that appear in transport
in porous media problems as well as to the shallow water equations with discontinuous
source term. For such problems, we present evidences that we are calculating qualita-
tively correct approximations with accurate resolution of small perturbations around the
stationary solution. Our work shows accurate results computed efficiently with the simple
high-resolution Lagrangian-Eulerian numerical scheme for general balance laws.

2 Numerical Method

We consider a novel Lagrangian-Eulerian formulation that can be viewed as an exten-
sion of previous works [2,3,8] for practical construction of numerical solutions for balance
law problems, but following innovative recent ideas introduced in [1] to construct weak
asymptotic methods for scalar equations and systems of conservation law equations. For
simplicity, we consider the particular scalar equation with u = u(x, t)

∂u

∂t
+

∂(u f(u))

∂x
= g(x, u), x ∈ R, t > 0; u(x, 0) = u0(x) ∈ L∞(T), x ∈ R, (1)

with f Lipschitz, with Lipschitz coefficient bounded on bounded sets and source term
g(x, u) integrable over the finite volume Dn

j . We provide a formal development of the ana-
logue Lagrangian-Eulerian scheme [4,5,8] for numerically solving the initial value problem
(1). As in the Lagrangian-Eulerian schemes [3–5], a local mass balance equation is ob-
tained by integrating the hyperbolic balance law (1) over the region in the space-time
domain. Here we consider the Lagrangian-Eulerian finite-volume cell centers

Dn
j = {(t, x) / tn ≤ t ≤ tn+1, σj− 1

2

(t) ≤ x ≤ σj+ 1

2

(t)}, (2)

where σn
j− 1

2

(t) is the parameterized integral curve such that σn
j− 1

2

(tn) = xn
j− 1

2

. These curves

are the lateral boundaries of the domain Dn
j in (2) and we define x̄n+1

j− 1

2

:= σn
j− 1

2

(tn+1) and

x̄n+1
j+ 1

2

:= σn
j+ 1

2

(tn+1) as their endpoints in time tn+1. The numerical scheme is expected to

satisfy some type of local mass balance (due to the inherent nature of the problem) from

time tn in the space domain
[

xn
j− 1

2

, xn
j+ 1

2

]

to time tn+1 in the space domain

[

x̄n+1
j− 1

2

, x̄n+1
j+ 1

2

]

.

With this, we must have the flux through curves σn
j− 1

2

(t) to be zero. From the integration

of (1) and the divergence theorem applied on the hyperbolic operator, left side of equation
(1), and using the fact that the line integrals over curves σn

j (t) vanish, we get the local
balance mass equation

∫ x̄n+1

j+1
2

x̄n+1

j− 1
2

u(x, tn+1)dx =

∫ xn

j+1
2

xn

j− 1
2

u(x, tn)dx+

∫∫

Dn
j

g(x, u) dxdt. (3)
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As in [3], the curves σn
j−1/2(t) are not straight lines in general, but rather solutions of the

local nonlinear differential equations [2, 4, 8]:
dσn

j−1/2
(t)

dt = u f(u)
u = f(u), for tn < t ≤ tn+1,

with initial condition σn
j−1/2(t

n) = xnj−1/2, assuming u 6= 0 (for the sake of presentation).
The extension of this construction follows naturally from the finite volume formulation

of the linear Lagrangian-Eulerian scheme, as in [2, 3, 8], building block to construct local

approximations such as fn
j−1/2 = f(Un

j−1/2) ≈ f(u(xj− 1

2

, tn)) with the initial condition

σn
j−1/2(t

n) = xnj−1/2. Indeed, distinct and high-order approximations are also acceptable

for
dσn

j−1/2
(t)

dt = f(u). As in [3], the piecewise constant numerical data is reconstructed into
a piecewise linear approximation (but high-order reconstructions are acceptable), through
the use of MUSCL-type interpolants Lj(x, t) = uj(t) + (x − xj)

1
∆xu

′
j . For the numerical

derivative 1
∆xu

′
j , there are several choices of slope limiters. A priori choice of such slope

limiters is quite hard, but they are chosen upon the underlying model problem under
investigation. A possible slope limiter is

U ′

j = MM

{

α∆uj+ 1

2

,
1

2
(uj+1 − uj−1), α∆uj− 1

2

}

, (4)

and this choice allows steeper slopes near discontinuities and retain accuracy in smooth
regions. The range of the parameter α is typically guided by the CFL condition. Equation
(3) defines a local mass balance between space intervals at time tn and at time tn+1. We
will later address how to project these volumes back to the original mesh. Defining

U
n+1
j :=

1

hn+1
j

∫ x̄n+1

j+1
2

x̄n+1

j− 1
2

u(x, tn+1)dx, and Un
j :=

1

h

∫ xn

j+1
2

xn

j− 1
2

u(x, tn)dx,

then, equation (3) can be rewritten into

U
n+1
j =

1

hn+1
j

(

hUn
j +

∫∫

Dn
j

g(x, u) dxdt

)

. (5)

Solutions σn
j−1/2(t) of the differential system are obtained using the approximations

Uj− 1

2

= 1
h

(

∫

xn

j− 1
2

xn
j−1

Lj−1(x, t)dx+
∫ xn

j

xn

j− 1
2

Lj(x, t)dx

)

=
1

2
(Uj−1 + Uj) +

1

8
(U ′

j − U ′

j−1).

(6)
The above approximation is not necessary in the linear case where u f(u) = a(x, t)u. We
must notice that the approximation of fn

j−1/2 may cause spurious oscillation in Riemann
problems, specially in shocks and discontinuity regions. For that, we use a polynomial
reconstruction of second degree to smooth out the approximation and also slope lim-
iters approximation of the form (4). The numerical solutions have shown qualitatively
correct behavior for nonlinear hyperbolic conservation laws. Convergence order remains
unchanged even with the reconstruction, being first-order. In the reconstruction we use
the nonlinear Lagrange polynomial in Uj−1, Uj and Uj+1. Equation (5) reads,

U
n+1
j =

1

hn+1
j

∫ xn

j+1
2

xn

j− 1
2

P2(x)dx, (7)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0296 010296-3 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0296


4

where P2(x) = Un
j−1 L−1(x−xj)+Un

j L0(x−xj)+Un
j+1 L1(x−xj), L0(x) = 1−

(

x
h

)2
and

L± 1(x) =
1
2

[

(

x
h ± 1

2

)2
− 1

4

]

. Next, we obtain the resulting projection formula as follows

Un+1
j = U

n+1
j +

∆tn

h

(

f+
j− 1

2

U
n+1
j−1 − |fj |U

n+1
j + f−

j+ 1

2

U
n+1
j+1

)

, (8)

where f+
j− 1

2

= f+(Un
j− 1

2

), f−

j+ 1

2

= f−(Un
j+ 1

2

) and |fj | = f+
j− 1

2

+f−

j+ 1

2

. Here ∆tn is obtained

under CFL-condition

max
j

{

f+
j− 1

2

, f−

j+ 1

2

}

∆tn ≤
h

2
,

which is taken by construction of method. We note that in the linear case, when a(x, t) =
a > 0 (or a < 0), the numerical scheme (5)-(8) is a extension of the Upwind scheme to
linear balance law, but our scheme can approximate solution in both cases a > 0 and
a < 0, the CFL-condition in this case is |a∆t| ≤ h as in the Upwind scheme.

3 Numerical Experiments

We present and discuss approximate computations for scalar balance laws and systems
of balance laws. The scalar calculations were performed in less that one second with
Matlab on a standard laptop with 2.60 GHz Intel Core i7-4510U CPU and 8.0 GB of
RAM memory.

The first test is an example of linear advection with a smooth (polynomial) source:

ut + 2ux = x3 + 6tx2, u(x, 0) = 0.

The initial data here is zero, but the exact solution of this differential equation is u(x, t) =
tx3. In x = 0 we have a sonic point accurately captured by our simulations. Figure 1
presents numerical solutions at times t = 0, t = 1.5 and t = 3.0 for a 256 cells mesh. For
this case we have a natural and robust generalization for the upwind method for balance
laws. The observed convergence rate was studied at time t = 3.0 with 32, 64, 128, 256, 512
and 1024 mesh grid cells and second-order convergence was observed (see Figure 2). Here
we used the midpoint rule for the source term quadrature, but the linear advection hyper-
bolic operator is being exactly calculated due to exact CFL condition.
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Figure 1: Numerical solutions with smooth source term g(x, t) = x3 + 6tx2.
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Figure 2: Convergence of error in L1, L2 and L∞ norms with uniform mesh refinement for
the smooth source term test. Second-order convergence is observed in this example.

For the second test, proposed by Shi Jin in [9], the source term is of the discontinuous
form g(x, u) = z′(x)u.

ut + (u f(u))x = g(x, u)

with flux function uf(u) = u2

2 and z(x) = cos(π x), 4.5 ≤ x ≤ 5.5 and 0 otherwise with
0 < x < 10. Note that z′(x) is a discontinuous function, so that g(x, u) is a discontinuous
source term in x. Figure 3 involves approximations with initial data u(x, 0) = 0, x > 0
and u(0, t) = 2, t > 0. The steady state solution of this problem is u+z = 2. The pictures
in Figure 3 show approximations with 128 cells (left), 256 (middle) and 512 cells (right)
for u (top pictures) and for steady state u + z (bottom pictures). The numerical results
present clearly qualitatively correct approximations at t = 1.
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Figure 3: Numerical solutions with discontinuous source term g(x, u).

We also consider, as in [7], a 2× 2 nonlinear system of balance laws modeling the flow
of water downing in a channel having a rectangular cross section and inclined at a constant
angle θ to the horizontal. This is a prototype model for shallow-water flow (see [8]) in an
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inclined channel with friction the system may be written as (in dimensionless variables)























∂h

∂t
+

∂(hu)

∂x
= 0,

∂(hu)

∂t
+

∂
(

hu2 + 1
2h

2
)

∂x
= h− C

1 + h

tan(θ)
v2,

(9)

where h is the height of the free surface and v is the averaged horizontal velocity. Precisely,
as in [7], the friction coefficient C is taken to be 0.1, while the inclination angle θ = π

6 .
On physical grounds, in this model problem it was assumed the hydrostatic balance in
the vertical direction and ignored any surface tension. Here, the initial velocity is taken
to be v0 = 1.699, while the initial height of the free surface consists of a triangular
perturbation of the uniform flow level, h0(x) = x+ 1.5, −0.5 ≤ x ≤ 0, h0(X) = −x+ 1.5,
0 ≤ x ≤ 0.5, and 1 elsewhere. Numerical approximations are shown in Figure 4 with a
clearly qualitatively correct approximations at t = 1.
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Figure 4: Numerical solutions to shallow water system (9) with 128, 256 and 512 cells (left
to right), h (height) in top and v (velocity) bottom .

4 Concluding Remarks

We presented the development of a simple and effective numerical scheme for solving
nonlinear scalar balance laws problems with the Lagrangian-Eulerian framework. This
method is based on a reformulation of the conservation laws in terms of an equivalent lo-
cally conservative space-time problem in divergence form. We make use of piecewise linear
and parabolic reconstructions ideas for resolution and accuracy reasons and the resulting
method present qualitatively correct numerical approximations. Our method is robust in
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a way that no special treatment is needed when the sign of velocity changes over time. We
expect to establish a componentwise extension of the scheme in order to perform numeri-
cal experiments for systems of conservation and balance laws, as well as multidimensional
problems. Our numerical experiments show good evidence of computational convergence
and preservation of the well-balanced property of balance laws.
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