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Ravi Prakash3
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Abstract. This paper deals with an inverse potential problem whose forward problem
is governed by Schrödinger equation. The inverse problem consists in the reconstruction
of a set of anomalies embedded into a fluid from partial measurements of the substance
concentration. Since the inverse problem, we are dealing with, is written in the form of
an ill-posed boundary value problem, the idea is to rewrite it as a topology optimization
problem. In particular, a shape functional is defined to measure the misfit of the solution
obtained from the model and the data taken from the partial measurements. This shape
functional is minimized with respect to a set of ball-shaped anomalies by using the concept of
topological derivatives. It means that the shape functional is expanded asymptotically and
then truncated up to the desired order term. The resulting expression is trivially minimized
with respect to the parameters under consideration, leading to a non-iterative second order
reconstruction algorithm. Finally, a numerical example is presented to show the effectiveness
of the proposed reconstruction algorithm.
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1 Introduction

In this paper, we deal with an inverse potential problem in R2 whose corresponding
forward problem is governed by the Schrödinger equation. The inverse problem under
consideration is about the reconstruction of a set of anomalies embedded in a fluid with
the help of partial measurements of the substance concentration. The inverse potential
problem governed by the Schrödinger equation has been studied by many authors. See,
for instance, [1, 3]. More precisely, let Ω ⊂ R2 be an open and bounded domain with
smooth boundary ∂Ω. We consider a subset Ωo of Ω where measurements of a scalar field
of interest are taken. As illustrated in Figure 1(a), there may be an unknown number
(denoted by N∗ ∈ Z+) of isolated anomalies ω∗

i within the domain Ω, i.e., there is a set
ω∗ = ∪N∗

i=1ω
∗
i , with open connected components ω∗

i which satisfy ω∗
i ∩ω∗

j = ∅ for i ̸= j and

ω∗
i ∩ ∂Ω = ∅, ω∗

i ∩ Ωo = ∅ for each i, j ∈ {1, · · · , N∗}.
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(a) (b)

Figure 1: (a) Domain Ω with a set of anomalies ω∗ and (b) Domain Ω without anomalies.

We consider the domain Ω as a bounded region representing a fluid medium which
contains a different fluid substance within a subdomain ω∗. In this set up, the inverse
problem consists in finding kω∗ such that the substance concentration z satisfies the fol-
lowing boundary value problem{

−∆z + kω∗z = 0 in Ω,
z = g on ∂Ω,

(1)

where the given Dirichlet data g is smooth and the parameter kω∗ is such that kω∗ = 0 in
Ω \ ω∗ and kω∗ = k in ω∗, with k ∈ R+. Now, for an initial guess kω of kω∗ , we consider
the substance concentration field u to be the solution to the boundary value problem{

−∆u + kωu = 0 in Ω,
u = g on ∂Ω,

(2)

where kω is such that kω = 0 in Ω \ ω and kω = k in ω.
The quantity kω∗ is unknown and hence z but we assume that z can be measured in

Ωo. We would like to find kω∗ with the help of measurements of z taken in Ωo. If we want
to look for the an appropriate kω∗ , we wish u to agree with z in Ωo i.e. we want u = z|Ωo

.
Since the inverse problem (1) does not have a unique solution when we want to deter-

mine both, the topology of ω∗ and the value k, we assume that the material property of
fluid anomalies k is known and we reconstruct the support of the anomalies ω∗ with the
help of the measurements of z taken in Ωo. It is also well known that the inverse prob-
lem of finding ω∗ in (1) for a given k still leads to an ill-posed boundary value problem.
Therefore, the idea is to rewrite it as a topology optimization problem. For this purpose,
we consider a weaker formulation of the inverse problem (1) which consists in solving the
topology optimization problem

Minimize
ω⊂Ω

Jω

(
u1, · · · , uM

)
=

M∑
m=1

∫
Ωo

(um − zm)2 , (3)

where M ∈ Z+ is the number of observations, zm denotes the measurement of concen-
tration of the fluid in Ωo and um denotes the solution of the boundary value problem (2)
corresponding to the Dirichlet data gm for m = 1, · · · ,M . Notice that, the minimizer of
the topology optimization problem (3) produces the best approximation to ω∗, solution of
the inverse problem (1), in an appropriate sense.
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In particular, problem (3) is minimized with respect to a set of ball-shaped anomalies
by using the concept of topological derivatives [5]. It means that the shape functional
Jω

(
u1, · · · , uM

)
is expanded asymptotically and then truncated up to the desired order

term. The resulting expression is trivially minimized with respect to the parameters under
consideration, leading to a non-iterative second order reconstruction algorithm.

The paper is organized as follows. In Section 2, the mathematical formulation of
the inverse problem is described as a topology optimization problem taking into account
the topological derivative concept. In Section 3, the asymptotic expansion of the shape
functional is presented. Based on this asymptotic expansion, a non-iterative reconstruction
algorithm is devised and a numerical example is presented in Section 4. Conclusions are
discussed in Section 5.

2 Topology optimization setting

The inverse problem (1) has been written in the form of a topology optimization
problem (3). It is well known that a quite general approach for dealing with such class
of problems is based on the concept of topological derivative, which consists in expanding
the shape functional Jω

(
u1, · · · , uM

)
with respect to the parameters depend upon a set

of small inclusions. Since the topological derivative does not depend on the initial guess
of the unknown topology ω∗, we start with the unperturbed domain by setting ω = ∅, see
Figure 1(b). More precisely, we consider

J0

(
u10, · · · , uM0

)
=

M∑
m=1

∫
Ωo

(um0 − zm)2 , (4)

where um0 be the solution of the unperturbed boundary value problem{
−∆um0 = 0 in Ω,

um0 = gm on ∂Ω.
(5)

Here, we are considering the topology optimization problem (3) for the ball-shaped
anomalies and hence we define the topologically perturbed counter-part of (5) by intro-
ducing N ∈ Z+ number of small circular inclusions Bεi (xi) with center at xi ∈ Ω and
radius εi for i = 1, · · · , N . The set of inclusions can be denoted as Bε (ξ) = ∪N

i=1Bεi (xi),
where ξ = (x1, . . . , xN ) and ε = (ε1, . . . , εN ). Moreover, we assume that Bε ∩ ∂Ω = ∅,
Bε ∩ Ωo = ∅ and Bεi (xi) ∩ Bεj (xj) = ∅ for each i ̸= j and i, j ∈ {1, · · · , N}. The shape
functional associated with the topologically perturbed domain is written as

Jε

(
u1ε, · · · , uMε

)
=

M∑
m=1

∫
Ωo

(umε − zm)2 (6)

with umε be the solution of the perturbed boundary value problem{
−∆umε + kεu

m
ε = 0 in Ω,

umε = gm on ∂Ω,
(7)
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where the parameter kε is such that kε = 0 in Ω \Bε (ξ) and kε = k in Bε (ξ).

As mentioned earlier, the topological derivatives measure the sensitivity of the shape
functional with respect to the parameters (ε, ξ) depending upon a set of small inclusions
Bε (ξ). Therefore, our idea is to obtain the number, shape and locations of the inclusions
that produce the best approximation to the anomaly ω∗ by using the concept of topological
derivatives. Proceeding in this way, we are interested in expanding the shape functional
Jε

(
u1ε, . . . , u

M
ε

)
defined in (6) with respect to the volume (Lebesgue measure) of the two-

dimensional ball Bεi(xi), i.e., |Bεi(xi)| = πε2i =: αi. We start by simplifying the difference
between the perturbed shape functional Jε

(
u1ε, · · · , uMε

)
and its unperturbed counter-part

J0

(
u10, · · · , uM0

)
defined in (6) and (4), respectively, as follows

Jε (uε) − J0 (u0) =

M∑
m=1

∫
Ωo

[
2 (umε − um0 ) (um0 − zm) + (umε − um0 )2

]
, (8)

where uε =
(
u1ε, · · · , uMε

)
and u0 =

(
u10, · · · , uM0

)
.

For m = 1, · · · ,M , let us consider the following ansätz for the expansion of umε with
respect to αi (observe that αi depends on εi):

umε (x) = um0 (x) + k

N∑
i=1

αih
ε,m
i (x) + k2

N∑
i=1

N∑
j=1

αiαjh
ε,m
ij (x) + ũmε (x) , (9)

where, for each i = 1, · · · , N and m = 1, · · · ,M , hε,mi is the solution of ∆hε,mi =
um0

|Bεi (xi) |
χBεi (xi) in Ω,

hε,mi = 0 on ∂Ω.
(10)

We write hε,mi as a sum of three functions pεi , qi and h̃ε,mi . In other words, hε,mi =
um0 (xi)(p

ε
i + qi) + h̃ε,mi , where pεi is a particular solution obtained by the convolution of

|Bεi(xi)|−1χBεi (xi) with the kernel of the Laplacian. More precisely,

pεi (x) =
1

|Bεi(xi)|

∫
Bεi (xi)

1

2π
log ∥y − x∥dy. (11)

Outside the ball Bεi(xi), we can simplify (11) to obtain

pi(x) := pεi (x) =
1

2π
log ∥xi − x∥ ∀x ∈ Ω \Bεi(xi). (12)

Observe that pi(x) does not depend on εi. Additionally, qi is the solution to the homoge-
neous boundary value problem{

∆qi = 0 in Ω,

qi = − 1

2π
log ∥xi − x∥ on ∂Ω

(13)
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and h̃ε,mi solves the boundary value problem ∆h̃ε,mi =
um0 − um0 (xi)

|Bεi(xi)|
χBεi (xi) in Ω,

h̃ε,mi = 0 on ∂Ω.
(14)

Taking into account the decomposition of hε,mi given by hε,mi = um0 (xi)(p
ε
i + qi) + h̃ε,mi , we

can introduce the notations hi := pi + qi and hεi := pεi + qi with pεi , pi as given in (11),
(12), respectively. In (9), hε,mij and ũmε are the solutions of the following boundary value
problems  ∆hε,mij =

hε,mj

|Bεi (xi) |
χBεi (xi) in Ω,

hε,mij = 0 on ∂Ω,

(15)

and {
−∆ũmε + kεũ

m
ε = −Φm

ε in Ω,
ũmε = 0 on ∂Ω,

(16)

respectively. In problem (16), we have Φm
ε = k3

∑N
i,j,l=1 |Bεj (xj) ||Bεl (xl) |hε,mjl χBεi (xi).

In order to simplify further calculations, let us introduce an adjoint state vm as the
solution of the following auxiliary boundary value problem{

−∆vm = (um0 − zm)χΩo in Ω,
vm = 0 on ∂Ω.

(17)

3 Topological asymptotic expansion

Now, we have all elements to evaluate the difference (8) explicitly. In fact, the topo-
logical asymptotic expansion of the shape functional Jε (uε) can be written as

Jε (uε) = J0 (u0) − α · d(ξ) + G(ξ)α · diag(α⊗ logα) +
1

2
H(ξ)α · α + o(|α|2), (18)

where α = (α1, · · · , αN ). In addition, the vector d ∈ RN , the matrix G ∈ RN × RN and
the Hessian matrix H ∈ RN × RN in the above expression are defined as

di := 2k
M∑

m=1

um0 (xi)v
m(xi), (19)

Gii := − k2

2π

M∑
m=1

um0 (xi)v
m(xi), Gij = 0, if i ̸= j (20)

and

Hii :=
1 + log π2

2π
k2

M∑
m=1

um0 (xi)v
m(xi) − 4k2

M∑
m=1

um0 (xi)v
m(xi)qi(xi)

− k

π

M∑
m=1

∇um0 (xi) · ∇vm(xi) + 2k2
M∑

m=1

(um0 (xi))
2

∫
Ωo

h2i , (21)
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Hij := −2k2
M∑

m=1

[um0 (xj)hj(xi)v
m(xi) + um0 (xi)hi(xj)v

m(xj)]

+ 2k2
M∑

m=1

um0 (xi)u
m
0 (xj)

∫
Ωo

hihj , if i ̸= j, (22)

respectively, for i, j = 1, · · · , N . The vector d(ξ) and the Hessian matrix H(ξ) are called
the first and second order topological derivative of the shape functional Jε (uε), respec-
tively.

4 Numerical results

The expression on the right-hand side of (18) depends on the number of anomalies N ,
their sizes α and locations ξ. Thus, from (18), we can define δJ(α, ξ,N) := −α · d(ξ) +
G(ξ)α · diag(α ⊗ logα) + 1

2H(ξ)α · α. The derivative of the function δJ(α, ξ,N) with
respect to the variable α yields the first order optimality condition, namely, ⟨DαδJ, β⟩ =
[(H(ξ) + G(ξ))α + 2G(ξ)diag(α⊗ logα) − d(ξ)] · β = 0, ∀β, which leads to the non-linear
system of the form

(H(ξ) + G(ξ))α + 2G(ξ)diag(α⊗ logα) = d(ξ) (23)

with the entries of the vector d ∈ RN and the matrices G, H ∈ RN ×RN defined in (19),
(20), (21) and (22), respectively.

The quantity α solution of (23) becomes a function of the locations ξ, namely α = α(ξ),
and its value is obtained by using the Newton’s method. Let us now replace the solution of
(23) into the expression for δJ(α, ξ,N). Therefore, the optimal locations ξ⋆ can be trivially
obtained from a combinatorial search over the domain Ω, solution to the following mini-
mization problem ξ⋆ = argminξ∈X

{
δJ(α(ξ), ξ,N) = −1

2 (d(ξ) + G(ξ)α(ξ)) · α(ξ)
}

, where
X is the set of admissible anomalies locations. Finally, the optimal sizes are given by
α⋆ = α(ξ⋆). In summary, our method is able to find in one step the optimal sizes α⋆ and
theirs locations ξ⋆ for a given N . The above procedure written in pseudo-code format can
be found in [2, 4].

Now, we present a numerical example in order to demonstrate the effectiveness of the
method proposed in the earlier sections of this paper. We consider the geometric domain
Ω = (−0.5, 0.5) × (−0.5, 0.5) which is discretized using three-node finite element scheme.
Considering the mesh and the subdomain Ωo, we form a uniform subgrid with a set of
feasible nodes X within which a combinatorial search is performed in order to find the
optimal size α⋆ and the appropriate center ξ⋆ of the embedded anomalies. In the Figure
2, we represent anomalies by black, the subdomain Ωo by gray and the remaining domain
Ω \ Ωo by white colors.

The example: Two circular regions with centers located at x∗1 = (−0.1, 0.1), x∗2 =
(0.1,−0.1) and with radius ε∗1 = ε∗2 = 0.05 are considered as the target anomalies. The
concentration of the fluid is measured in Ωo = Ω \ Bρ(0, 0) with Bρ(0, 0) = {x ∈ R2 :
∥x∥ < ρ}, where ρ = 0.3. In the current setting, we take only one observation by taking
into account the Dirichlet data g = 1. The domain Ω containing the two target anomalies
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ω∗
1 and ω∗

2 is illustrated in Figure 2(a). We reconstruct the anomalies by considering k = 1.
The combinatorial search was conducted on the subgrid of 57 nodes within Ω \ Ωo. We
successfully find the exact location of the centers x∗1 and x∗2 of the anomalies ω∗

1 and ω∗
2,

respectively. The radius obtained were ε⋆1 = ε⋆2 = 0.04943 which are approximately equal
to the true value. We demonstrate the numerical result in Figure 2(b).

(a) (b)

Figure 2: (a) Target domain and (b) the respective result.

5 Conclusions

In this paper a non-iterative reconstruct method for an inverse potential problem
modeled by the Schrödinger equation is proposed. The method is based on the topological
derivatives of shape functionals associated with the inverse problems. One the one hand,
the algorithm devised is able to reconstruct the embedded anomalies in one step and it
is independent of any initial guess. One the other hand, an accurate reconstruction can
requires more than one observation depending on the setting of the subdomain where
the measurements of concentration of the fluid are taken and the number of embedded
anomalies.
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