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1 Introduction

The Non-Integer Order Calculus, traditionally known as Fractional Calculus (FC), is
the branch of mathematics that deals with the study of integrals and derivatives of non-
integer order. Althouhg it is not accurate, since the order of an integral and a derivative can
be real and also complex [23,24], it has played an outstanding role [24] since its creation,
as several mathematicians and applied researchers have obtained important results by
modeling real processes using FC [17,19].

Given a differential equation that describes a specific phenomenon, a common way to
use fractional modeling is to replace the integer order derivatives by non-integer derivati-
ves, usually with order lower than or equal to the order of the original derivatives, so that
the usual solutions may be recovered as a particular cases [7].

Although there is no trivial physical and geometrical interpretation for the fractio-
nal derivative and the fractional integral [22], fractional order differential equations are
naturally related to systems with memory, as fractional derivatives are usually nonlocal
operators, i.e. the calculation of a time-fractional derivative at a given time requires its
knowledge at all previous times [7, 19]. Processes with memory exist in many biological
systems [16]. Besides, fractional differential equations may help in reducing the errors
arising from the neglected parameters in modeling real life phenomena [1, 14,17].
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There are several applications of fractional calculus in engineering, for example in the
study of control and dynamical systems [19]. Moreover, there are in physics several po-
tential applications of fractional derivatives, for instance, in the generalization of classical
equations [2–5].

In medicine, it has been found that the electrical conductance of the cell membranes of
living organisms are described by fractional order equations, so that they may be classified
in groups of non-integer order models. Fractional derivatives embody essential features
of cell rheological behavior and have enjoyed a great success in the field of rheology [1].
Some mathematical models in HIV show that fractional models are more approximate
than their integer order versions [1, 9].

With the aim of solving fractional partial differential equations and generalize results,
several definitions of “fractional derivative”(FD) have been proposed [8]. For example,
one should also consider the Grünwald-Letnikov, Riemann-Liouville and Caputo fractio-
nal derivatives and the Riesz potential. A natural question arises: “What is a fractional
derivative?”In a paper whose title is exactly this question [18], Manuel D. Ortigueira and
J. A. Tenreiro Machado set a criterion named Wide Sense Criterion (WSC) which esta-
blishes when an operator is a FD and showed that the well-known definitions of Grünwald-
Letnikov, Riemann-Liouville, Caputo and Riesz satisfy the WSC.

Since linear sequential fractional differential equations are naturally related to the
modeling of many problems in physics and applied science, several methods to obtain the
analytical solutions for this kind of equations have been studied [21].

This work presents, with the help of some particular linear fractional differential equa-
tions, new theorems about eigenfunctions related to the fractional differential operators of
Riemann-Liouville, Dnα

a+ and of Caputo CDnα
a+. From these theorems, we may express the

exponential function in terms of a sum involving the Mittag-Leffler functions4 [12].

The results are presented as follows: after this introduction, In Section 2 the defini-
tion of the so-called linear sequential fractional differential equation and new theorems are
introduced. In Section 3 we present the analytical solution of some particular linear se-
quential fractional differential equations. Finally, Section 4 brings the concluding remarks.

2 Linear fractional differential equations

In this paper we employ the left-sided fractional operators explained above. A similar
reasoning will extend the results obtained here to right-sided fractional operators5.

Let Λ = [a, b] be an interval on the real axis R, x ∈ Λ, 0 < α ≤ 1, n ∈ N and
g, aj : Λ → R continuous functions for j = 0, 1, 2, . . . , n − 1. The linear sequential
fractional differential equations [15, 21] of order nα, denoted by [Lnα(f)] (x), are defined
as

4These result can be found at [13].
5For the basic aspects and definitions of FC see [7].
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[Lnα(f)] (x) :=
(

Dnα
a+f

)

(x) +
n−1
∑

j=0

aj(x)
(

D
jα
a+f

)

(x) = g(x), (1)

where Dα
a+ represents the fractional derivative of Riemann-Liouville (or Caputo) and

(

D0
a+f

)

(x) = f (0) (x) = f (x) .

In this paper we consider the particular case in which a0 (x) = λ, with λ 6= 0, aj (x) = 0,
for j = 1, 2, . . . , n− 1 and g(x) = 0 in equation (1). As a result, we obtain a homogeneous
linear sequential fractional differential equation, denoted by [ L̂nα(f)](x) and defined as

[ L̂nα(f)](x) :=
(

Dnα
a+f

)

(x)− λf(x) = 0. (2)

From the two theorems presented below about eigenfunctions of the Riemann-Liouville
and Caputo fractional operators it is possible to find solutions for fractional differential
equations of the type of equation (2), where Dα

a+ can be the Riemann-Liouville or the
Caputo fractional operators6.

Theorem 2.1.. Let Ω = (a, b) be an interval on the real axis R, n ∈ N, λ 6= 0 a real
number and α ∈

(

n−1
n

, 1
]

an interval on the real axis. Then

fk (x) = (x− a)nα−k Enα,nα+1−k [λ (x− a)nα] , (3)

for x ∈ Ω and k = 1, 2, . . . , n, are the eigenfunctions associated with the eigenvalues λ of
the Riemann-Liouville left-sided fractional derivative Dnα

a+.

Now, considering the Caputo left-sided fractional derivative [13], we have the following
theorem:

Theorem 2.2.. Let Λ = [a, b] be an interval on the real axis R, n ∈ N, λ 6= 0 a real
number and α ∈

(

n−1
n

, 1
]

an interval on the real axis. Then

ϕk (x) = (x− a)k−1 Enα,k [λ (x− a)nα] , (4)

with x ∈ Λ and k = 1, 2, . . . , n, are the eigenfunctions associated with the eigenvalues λ of
the Caputo left-sided fractional derivative CDnα

a+.

Proposition 2.1. . If {yk (x)}nk=1 is a fundamental system of solutions for the linear
sequential fractional differential equation (1) with g(x) = 0, then the general solution of
the equation is given by [15]

y (x) =

n
∑

k=1

ckyk (x) , (5)

where {ck}nk=1 are arbitrary constants.

6The proof the following theorems, corollaries and propositions can be found at [13]
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Corollary 2.1. Let Ω = (a, b) be an interval on the real axis R, n a natural number
and α ∈ R

(

n−1
n

< α ≤ 1
)

. Then the general solution of the linear sequential fractional
differential equation

(

Dnα
a+f

)

(x)− λf(x) = 0 (6)

can be written as

fα (x) =
n
∑

k=1

ck (x− a)nα−k Enα,nα+1−k [λ (x− a)nα] , (7)

where {ck}nk=1 are arbitrary constants and x ∈ Ω.

Corollary 2.2.. Let Λ = [a, b] be an interval on the real axis R, n a natural number
and α ∈ R,

(

n−1
n

< α ≤ 1
)

. Then the general solution of the linear sequential differential
equation

(

CDnα
a+ϕ

)

(x)− λϕ(x) = 0 (8)

can be written as

ϕα (x) =
n
∑

k=1

ck (x− a)k−1 Enα,k [λ (x− a)nα] , (9)

where {ck}nk=1 are arbitrary constants and x ∈ Λ.

3 Differential equation [ L̂nα(f)](x)

There are recent applications of FC in different fields of knowledge and several methods
have been proposed for solving fractional differential equations [20].

In this section we present some examples of equations arising from equations (6) and
(8).

Example Let Ω = (0, b) be an interval on the real axis R and α ∈ R
(

2
3 < α ≤ 1

)

.
Using Corollary 2.1, the solution of the fractional differential equation

(

D3α
0+f

)

(x)− f(x) = 0, (10)

can be written as

fα (x) = c1 x
3α−1E3α,3α

(

x3α
)

+ c2 x
3α−2E3α,3α−1

(

x3α
)

+ c3 x
3α−3E3α,3α−2

(

x3α
)

, (11)

where {ck}3k=1 are arbitrary constants and x ∈ Ω.

Example Let Λ = [0, b] be an interval on the real axis R, α ∈ R
(

1
2 < α ≤ 1

)

, and
λ 6= 0 a real constant. From Corollary 2.2, the solution of the following homogeneous
fractional Helmholtz equation in one variable, which represents a time-independent form
of the wave equation,

(

D2α
0+ϕ

)

(x) + λ2ϕ(x) = 0, (12)
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can be written as

ϕα (x) = c1 x
2α−1E2α,2α

(

−λ2x2α
)

+ c2 x
2α−2E2α,2α−1

(

−λ2x2α
)

, (13)

where c1 and c2 are arbitrary constants.
From [12], we know that

E2 (z) = cosh
(√

z
)

and E2,2 (z) =
sinh

√
z√

z
.

Thus

E2

(

−λ2x2
)

= cosh (i |λ|x) = cos (|λ| x) , (14)

and

E2,2

(

−λ2x2
)

=
sinh (i |λ|x)

i |λ| x =
sin (|λ|x)

|λ|x . (15)

If α = 1 in equation (12), using equations (14) and (15) into equation (13), we obtain a
particular solution for the Helmholtz equation,

∆ϕ+ λ2ϕ = 0, (16)

namely,

ϕ1 (x) = c1 cos (|λ| x) + c2
sin (|λ| x)

|λ| , (17)

where {ck}2k=1 are arbitrary constants and x ∈ Λ.
The graphic of the solution given in equation (13) is presented for different values of

α
(

1
2 < α ≤ 1

)

assuming c1 = c2 = 1 and λ = 2.
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Figura 1: Curves for ϕα (x), for different values of α.
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4 Concluding remarks

This work presents the so-called eigenfunctions associated with the Riemann-Liouville
and Caputo fractional differential operators, considering the parameter nα with n a natu-
ral number and α in a limited interval that depends on n. In both cases the eigenfunctions
were obtained in terms of the two parameter Mittag-Leffler functions. Besides that, the
analytical solution of a particular homogeneous linear sequential fractional differential
equations of the kind [ L̂nα(f)](x) was obtained through the eigenfunctions found in The-
orems 2.1 and 2.2. Examples and applications were discussed.
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