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Abstract. We consider a mathematical model that describes a mixture of n elastic materials
with frictional damping and boundary frictional damping. We study, from the functional
and numerical analysis point of view, the mixture problem with frictional damping. The
problem consists of a linear system of n coupled hyperbolic partial differential equations. An
existence and uniqueness result and an energy decay property are mentioned. In the case
of boundary frictional damping we show that the corresponding semigroup is exponentially
stable if B (dissipation parameters) is full rank. Then, a fully discrete approximation is
introduced using the finite-difference method to characterize system energy.
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1 Introduction

The theory of mixtures of solids has been widely investigated in the last decades
[1,2,5,6]. In recent years, an increasing interest has been directed to the study of the qua-
litative properties of solutions related to mixtures composed of two interacting continua.
Several results concerning existence, uniqueness, initial-condition continuous dependence
and asymptotic stability can be found in the literature [9,10,12]. In [4], it was made a full
characterization of the asymptotic behavior of the following mixture model

RUtt −AUxx + BUt = 0, (1)

with U = (u1, · · · , un), R = (ρiδij)n×n, A = (aij)n×n, B = (bij)n×n. Where δij is the
Kronecker’s delta, A is a positive definite (real) symmetric matrix and B a semipositive
definite (real) symmetric matrix. They proved that depending on the relationship of the
coefficients, two situations may occur when Dirichlet boundary conditions is considered.
The system can be exponentially stable or there exists an oscillating solution.

Let SA(t) be the semigroup associated to (1) then
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Theorem 1.1. Let us denote by W = R−1A and let B be a positive semidefinite matrix,
then the following statements are equivalents.

• SA(t) is exponentially stable.

• Denoting by Bj the j-row vector of B then

dim span
{
Bj , BjW, BjW2, ..., BjWn−1, j = 1, 2..., n

}
= n. (2)

Proof. See [4].
As an straightforward corolary, the dissipative mechanism is described by the rank of

the matrix B.
For now on, we study the one dimensional model of a mixture of n interacting continua

over the compact interval [0, l]. We consider a localized frictional dissipation at x = l,

RUtt −AUxx = 0, (3)

U(0, t) = 0 and AUx(l, t) + BUt(l, t) = 0, t ∈ R+, (4)

U(x, 0) = U0(x), Ut(x, 0) = U1(x). (5)

Without loss of generality we can assume that R = I and B is diagonal matrix,
otherwise we make the substitution U = ST Ũ in equations (3)-(4), where ST , the transpose
S, is a non-singular matrix that diagonalize R and B simultaneously [3].

The questions that arrise are: is it possible that system (3)–(5) is exponentially stable?
Or, there exists oscillating solutions? To answer theses questions, the rank of B play an
important role, as shown later. The main result of this study is that the semigroup
associated to (3)-(5) is exponentially stable if B is a positive definite.

2 Semigroup formulation

The semigroup theory is used to show the well posedness as well as the asymptotic
properties of (3)–(5). We denoted H1

?(0, l) = {U ∈ [H1(0, l)]n , U(0) = 0} and L2(0, l) =
[L2(0, l)]n. To do that, let us introduce the phase space H = H1

?(0, l) × L2(0, l), which is
a Hilbert space with the norm

||(U, V )||2H =

∫ l

0
U∗xAUxdx+

∫ l

0
V ∗RV dx (6)

Let us introduce the operator A given by

A
(
U
V

)
=

(
V

R−1AUxx

)
(7)

with domain D(A) =
{

(U, V ) ∈ H1
?(0, l) ∩H2(0, l)×H1

?(0, l) ; AUx(l) + BV (l) = 0
}
.

Under this conditions the initial-boundary value problem (3)-(5) can be rewritten as

d

dt
U = AU, U(0) = U0, (8)
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where U(t) = (U(t), V (t))T and U0 = (U0, U1)T .
The solubility of the abstract Cauchy problem (8) is guaranteed by the next Theorem,

which can be demonstrated similarly to Theorem 4 of [4].

Theorem 2.1. The operator A is the infinitesimal generator of a contractions C0-semigroup,
denoted by SA(t) = eAt.

Another important tool used for the characterization of the exponential stability of a
C0-semigroup was obtained by [7] and [11] independently. Here we use the version due
to [11].

Theorem 2.2. Let SA(t) be a C0-semigroup of contractions of linear operators on Hilbert
space H with infinitesimal generator A. Then SA(t) is exponentially stable if and only if

iR ⊂ %(A) and lim sup
|λ|→+∞

||(iλI −A)−1||L(H) <∞

where L(H) denotes the space of continuous linear functions in H.

Theorems 2.1 and 2.2 are the basic tools for the well posedness and the exponential
stability of system (3)–(5).

3 On the Stability of Semigroup

The objective of this section is to demonstrate that the exponential stability is achieved
when B is a definite positive matrix (rank B = n).

Note that A−1 is compact so D(A) is compactly embedded into H. Thus we conclude
that the spectrum of the operator A consists entirely of isolated eigenvalues. Based on
this, it can be proved that iR ∩ σ(A) = ∅, which is equivalent to iR ⊂ %(A).

On the other hand, the resolvent equation can be written as

iλU−AU = F, (9)

where U = (U, V ) ∈ D(A), F = (F,G) ∈ H and λ ∈ R. Taking the inner product in H
and considering the real part we obtain

V (l)∗BV (l) = Re (U,F)H =⇒ |V (l)|2 ≤ C||U||H||F||H. (10)

Theorem 3.1. Suppose that B is a definite positive matrix, then the semigroup SA(t) is
exponentially stable.

Proof. We will show that

lim sup
|λ|→+∞

||(iλI −A)−1||L(H) <∞.

Using (9) and (10) we have

|Ux(l)|2 = |A−1BV (l)|2 ≤ C||U||H||F||H (11)
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Let Q be a real symmetric matrix. Note that for W ∈ H1, we have∫ l

0
x
d

dx
(W ∗QW ) dx = 2 Re

∫ l

0
xW ∗QWx dx

and integrating by parts

2 Re

∫ l

0
xW ∗QWx dx = lW ∗(l)QW (l) −

∫ l

0
W ∗QW dx. (12)

From (9), we have

iλV = AUxx +G,

and multiplying by xUx
∗ we have

−
∫ l

0
xVx

∗V dx =

∫ l

0
xUx

∗AUxx dx+

∫ l

0
xUx

∗(G+ Fx) dx.

Taking the real part and applying (12), we obtain∫ l

0

(
|V |2 + U∗xAUx

)
dx = l

(
|V (l)|2 + Ux(l)∗AUx(l)

)
+R,

where R is a number satisfying |R| ≤ C||U||H||F||H. Using (10) and (11) we obtain ||U||H ≤
C||F||H and our conclusion follows from Theorem 2.2.

2

4 Numerical Experiments

The goal of this section is to show numerical experiments in order to exemplify the
concepts of exponential stability obtained in the previous sections.

As described above we are considering two problems, namely, mixture of elastic mate-
rials with friccional damping (1) and mixture of elastic materials with boundary fricccional
damping (3)–(4). From the numerical point of view, the first problem is straigthforward.
On the other hand, the second problem presents extra difficulties because of the boundary
frictional condition.

Problem I: Here, we are interested in solving
RUtt −AUxx + BUt = 0,
U(0, t) = 0 and U(l, t) = 0, t ∈ R+,
U(x, 0) = U0(x), Ut(x, 0) = U1(x),

(13)

where U0(x) = 0 and U1(x) = (u1
1(x), u2

1(x), u3
1(x))T is given by:

ui1(x) =


0 if 0 ≤ x ≤ 0.4
10i(x− 0.4) if 0.4 ≤ x ≤ 0.5
10i(0.6− x) if 0.5 ≤ x ≤ 0.6
0 if 0.6 ≤ x ≤ 1

. (14)
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The problem above is a hyperbolic system with a frictional term. Theorem 1.1 says
SA(t), the semigroup associated to (13), is exponentially stable if and only if R−1A and
B are observable matrices.

We divide this problem in two cases. The first one, we present a case where R−1A
and B are observable matrices, thus by Theorem 1.1 we expect an exponentially stable
semigroup. For this case consider,

A =

 2 2 0
2 4 0
0 0 1

 , B =

 1 −1 0
−1 2 −1

0 −1 1

 and R =

 1 0 0
0 1 0
0 0 1

 . (15)

In the second case, R−1A and B are not observable matrices, thus we do not expect an
exponentially stable semigroup. For this case consider

A =

 3 3 0
3 6 0
0 0 6

 , B =

 1 −1 0
−1 2 −1

0 −1 1

 and R =

 1 0 0
0 3

2 0
0 0 1

 . (16)

Note that for both cases the frictional term is the same, only the propagation part is
changed. To evaluate if a system is exponentially stable we need to analyze an energy
functional associated to the system, given by equation (6).

Problem (13) is discretized using finite differences, more specifically we used a central-
space scheme, and a central-time scheme for the second derivatives and a backward-time
scheme for the first temporal derivative. The backward-time scheme was taken because B
is a positive semidefinite matrix, which means any other discretization would require the
calculation of the inverse of B or to solve a possible rank-deficient system.

Figure 1a presents the energy curves for cases (15) and (16). Case (15) is exponentially
stable (blue curve), while case (16) is not exponentially stable (green curve).

Problem II: Here, we are interested in solving
RUtt −AUxx = 0,
U(0, t) = 0 and AUx(l, t) + BUt(l, t) = 0, t ∈ R+.
U(x, 0) = U0(x), Ut(x, 0) = U1(x).

(17)

where U0(x) = 0 and U1(x) = (u1
1(x), u2

1(x), u3
1(x))T is given by (14). Theorem 3.1 says,

if B is full rank, then the semigroup SA(t) is exponentially stable.
For this problem we consider R = A = I, and two cases for B, called B1 and B2,

given by

B1 =

 2 1 0
1 1 0
0 0 1

 and B2 =

 6 0 −2
0 3 −2
−2 −2 2

 . (18)

The main objective of this experiment is to show that under certain conditions (B is full
rank) the boundary frictional damping is enough to guarantee the system is exponetially
stable. For this reason, we present two different cases where the only difference is in the
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boundary condition. Based on Theorem 3.1, we expect the system with B1 (full rank) is
exponentially stable, while the system with B2 (rank deficient) would not be exponentially
stable.

Problem (17) is discretized using finite differences, more specifically we used a central-
space-central-time scheme. The challenge here is the discretization of the boundary con-
dition. Besides, consider B positive semidefinite, according to the well-posedeness of the
problem. It implies that a numerical scheme must not take into account the inversibility
of B.

Thus,

AUx(l, t) + BUt(l, t) = 0 =⇒ Ux(l, t) = −A−1BUt(l, t)

Applying a backward-time-backward-space scheme, it yields:

un+1
M = (I + βA−1B)−1(un+1

M−1 + βA−1BunM ). (19)

where β = ∆x
∆t , n is related to the temporal discretization and M is the space discretization

at the boundary. This scheme is valid if (I+βA−1B)−1 exists. Such inverse is guaranteed
by a well-known linear algebra result [3].

Figure 1b presents the energy curves for cases (18). The B1 case is exponentially stable
(blue curve), while the B2 case is not exponentially stable (green curve).

In the first numerical experiment, the dissipation matrix B (rank defficient) is applied
over the interval [0, l]. It exemplifies the relation of the exponential stability and the
observability of the matrices R−1A and B. In the second numerical experiment, the dissi-
pation is located at the extreme x = l, we verified the B must be full rank. The outcome
of the numerical experiments agree with Theorem 1.1 and Theorem 3.1. We conclude
that the rank of dissipation influences the system stability and when it is restricted to the
boundary of the interval, the dissipation must be full rank.
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