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Abstract. Autoassociative memories (AMs) are models inspired by the human ability to
store and retrieve information by association. A fuzzy associative memory is used for the
storage and recall of fuzzy sets. Inspired by the fuzzy morphological associative memories,
we recently introduced the class of max-C projection fuzzy autoassociative memories (max-
C PFAMs). In few words, a max-C PFAM projects the input vector into the set of all
max-C combinations of the stored vectors. In this paper, we present its dual version, the
class of min-D PFAMs, which projects an input into the set of all min-D combinations. In
this paper we also address some theoretical issues of the two PFAM models.
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1 Introduction

An autoassociative memory (AM) is an input-output system that allows for the storage
and recall of a finite set of information [7]. Such system is inspired by the human ability to
store and retrieve information by association. Such as the human brain, an AM memory
is expected to retrieve a stored information upon presentation of a partial or corrupted
version of an stored item.

Mathematically, an AM is formulated as follows: Given a set A =
{
a1, . . . ,ak

}
, called

the fundamental memory set, an AM is an application M such that M(aξ) = aξ holds
as true as possible for ξ ∈ K = {1, 2, . . . , k} [7]. Furthermore, the application M should
present some noise tolerance, i.e., we expect M(ãξ) = aξ if ãξ is a corrupted or partial
version of aξ.

The AMs achieved further notoriety in the scientific community after the work of
Hopfield in the early 1980s [7]. In few words, Hopfield showed that a discrete nonlinear
dynamic system can be designed to implement an AM for the storage and recall of binary
patterns.

The first AM model designed for the storage and recall of fuzzy set have been intro-
duced by Kosko in 1992 [8]. Briefly, Kosko’s fuzzy associative memory is described in
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terms of either the max-minimum or max-product compositions. Despite the successful
applications of the FAMs of Kosko, this associative memory model suffers from a very low
storage capacity [3, 8]. As a consequence, many other FAM models have been developed
subsequently [6, 13–15]. Applications of the FAMs include classification [6], times-series
prediction [15], and image reconstruction [11,13,15].

Inspired by the max-plus projection autoassociative morphological memories (max-plus
PAMMs) introduced by Valle [12], we proposed recently the class of max-C projection
fuzzy autoassociative memories (max-C PFAMs) [10]. In few words, a max-C PFAM
projects the input pattern into set whose elements are max-C combinations of the items
stored. In this work, we present a dual model, called min-D PFAM, in which the input
is projected into the set of all min-D combinations of the stored items. Furthermore, we
present some theoretical results concerning both max-C and min-D PFAMs.

The paper is organized as follows. We first review some basic concepts of fuzzy logic
in the next section. The max-C and min-D PFAMs are discussed in Section 3. In Section
3 we also present some theoretical results and address the duality relationship between
the two PFAMs. We finish the paper with the concluding remarks.

2 Basic Concepts of Fuzzy Logical Operators

The AM models considered in this paper are based in fuzzy logic operations, namely,
fuzzy conjunction, fuzzy disjunction, fuzzy implication, fuzzy coimplication, and fuzzy
negation. For a more detailed treatment on these operators, the reader is referred to [1,4,9].
We would like to point out that, in this paper, the symbols “∨” and “∧” are used to
represent respectively the supremum (maximum) and infimum (minimum) operations.

Definition 2.1 (Fuzzy conjunction). A fuzzy conjunction C : [0, 1]× [0, 1] −→ [0, 1] is an
increasing operator that satisfies C(0, 0) = C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1.

Definition 2.2 (Fuzzy disjunction). A fuzzy disjunction D : [0, 1]× [0, 1] −→ [0, 1] is an
increasing operator that satisfies D(1, 1) = D(0, 1) = D(1, 0) = 1 and D(0, 0) = 0.

Definition 2.3 (Fuzzy Implication). A fuzzy implication is an operator I : [0, 1]×[0, 1] −→
[0, 1] decreasing in the first argument, increasing in the second argument, which satisfies
I(0, 0) = I(0, 0) = 1 and I(1, 0) = 0.

Definition 2.4 (Fuzzy coimplication). A fuzzy coimplication is an operator J : [0, 1] ×
[0, 1] −→ [0, 1] decreasing in the first argument, increasing in the second argument, which
satisfies J(0, 0) = J(1, 1) = 0 and J(0, 1) = 1.

A fuzzy conjunction and a fuzzy implication, as well as a fuzzy disjunction and a
fuzzy coimplication, can be related through of a fundamental concept of the mathematical
morphology called adjunction [5].

Definition 2.5 (Adjunction). A fuzzy implication I and a fuzzy conjunction C form an
adjunction if the following relations hold true

C(x, y) ≤ z ⇐⇒ x ≤ I(y, z), ∀x, y, z ∈ [0, 1]. (1)
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Similarly, a fuzzy disjunction D and fuzzy coimplication J form an adjunction if

D(x, y) ≥ z ⇐⇒ x ≥ J(y, z), ∀x, y, z ∈ [0, 1]. (2)

Definition 2.6 (Fuzzy negation). A decreasing operator η : [0, 1] −→ [0, 1] is a fuzzy
negation if η(0) = 1 and η(1) = 0. Moreover, if η(η(x)) = x for all x ∈ [0, 1], we say that
η is a strong fuzzy negation.

The fuzzy conjunction C can be connected to a fuzzy disjunction D by mean of the
duality relationship with respect to a fuzzy negation η as follows:

D(x, y) = η
(
C
(
η(x), η(y)

))
or C(x, y) = η

(
D
(
η(x), η(y)

))
, ∀x, y ∈ [0, 1] (3)

In a similar manner, a fuzzy coimplication J is the dual operator of a fuzzy implication I
with relation the fuzzy negation η if and only if

J(x, y) = η
(
I
(
η(x), η(y)

))
or I(x, y) = η

(
J
(
η(x), η(y)

))
, ∀x, y ∈ [0, 1] (4)

In analogy to the concept of linear combination, we say that z ∈ [0, 1]n is a max-C
combinations of the vectors belonging to the finite set A =

{
a1, . . . ,ak

}
⊆ [0, 1]n if

z =
k∨
ξ=1

C(λξ,a
ξ) ⇐⇒ zi =

k∨
ξ=1

C(λξ, a
ξ
i ), ∀i = 1, . . . , n, (5)

where λξ ∈ [0, 1] for all ξ = 1, . . . , k. Similarly, a min-D combination of the vectors of A
is given by

y =
k∧
ξ=1

D(θξ,a
ξ) ⇐⇒ yi =

k∧
ξ=1

D(θξ, a
ξ
i ), ∀i = 1, . . . , n, (6)

where θξ ∈ [0, 1], for all ξ = 1, . . . , k. The sets of all max-C combinations and min-D
combinations of A =

{
a1, . . . ,ak

}
⊆ [0, 1]n are respectively defined by

C(A) =

z =
k∨
ξ=1

C(λξ,a
ξ) : λξ ∈ [0, 1]

 and D(A) =

z =
k∧
ξ=1

D(θξ,a
ξ) : θξ ∈ [0, 1]

 .

(7)

3 Max-C and min-D PFAMs

First of all, recall that a fuzzy set x in a finite universe U = {u1, u2, . . . , un} can be
identified with a vector x = [x1, x2, . . . , xn]T ∈ [0, 1]n, where the component xj = x(uj)
denotes the degree of pertinence of uj in the fuzzy set x [9]. We denote the family of all
fuzzy sets on U by F(U). Now, an application M is a fuzzy associative memory (FAM)
if it is designed for the storage and recall fuzzy set, i.e., M : F(U) −→ F(U).
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A max-C projection fuzzy autoassociative memory (max-C PFAM) is the mapping that
projects an input x downright into the set of all max-C combinations of a1, . . . ,ak [10]. In
mathematical terms, given a fundamental memory set A =

{
a1, . . . ,ak

}
, a max-C PFAM

V : [0, 1]n → [0, 1]n is defined by

V(x) =
∨
{z ∈ C(A) : z ≤ x} , ∀x ∈ [0, 1]n. (8)

In a similar fashion, let us define a min-D PFAM as the mapping that projects an input
x upright into the set of all min-D combinations of a1, . . . ,ak. In mathematical terms,
given a fundamental memory set A, a min-D PFAM S : [0, 1]n → [0, 1]n is defined by

S(x) =
∧
{y ∈ D(A) : y ≥ x} , ∀x ∈ [0, 1]n. (9)

The following theorem is a straightforward consequence of previous definition.

Theorem 3.1. The max-C and min-D PFAMs given respectively by (8) and (9) satisfy
the inequalities V(x) ≤ x ≤ S(x) for any input pattern x ∈ [0, 1]n.

The following theorem shows that the max-C and min-D PFAMs have optimal absolute
storage capacity if C and D have a left identity.

Theorem 3.2. If the fuzzy conjunction C and fuzzy disjunction D have left identity, then
the max-C and min-D PFAMs satisfy the equations V(aξ) = aξ = S(aξ), for all ξ ∈ K.

Assume that the fuzzy conjunction C and the fuzzy disjunction D have a left identity.
From Theorem 3.1, a max-C PFAM is able retrieve a fundamental memory aξ if and only
if the input x satisfies x ≥ aξ. Also, a min-D PFAM is able to recall aξ if and only if
x ≤ aξ. We say that a distorted version x of the original vector aξ has undergone a dilative
change if x ≥ aξ. Similarly, we say that a corrupted version x of aξ has undergone an
erosive change if x ≤ aξ. Using this terminology, we can assert that the max-C PFAM
is robust in the presence of dilative noise but it is not effective in the presence of erosive
noise. Dually, a min-D PFAM is robust in the presence of erosive noise but it is not
effective in the presence of dilative changes.

The next theorem provides effective formulas for the implementation of the max-C
and min-D PFAMs.

Theorem 3.3. Consider a fundamental memory set A =
{
a1, . . . ,ak

}
⊆ [0, 1]n. Let

a fuzzy implication I and a fuzzy conjunction C form an adjunction. For any input
x ∈ [0, 1]n, the max-C PFAM V satisfies

V(x) =

k∨
ξ=1

C(λξ,a
ξ), where λξ =

n∧
j=1

I(aξj , xj). (10)

Dually, let a fuzzy coimplication J and a fuzzy disjunction D form an adjunction. For
any input x ∈ [0, 1]n, the output of min-D PFAM S can be computed by

S(x) =

k∧
ξ=1

D(θξ,a
ξ), where θξ =

n∨
j=1

J(aξj , xj). (11)
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Proof. We are going to proof only the first part of Theorem 3.3. The second part can
be derived in a similar manner. Let z ∈ C(A) be a max-C combination of a1, . . . ,ak and
consider the set of indexes N = {1, . . . , n} and K = {1, . . . , k}. Since the fuzzy implication
I and the fuzzy conjunction C form an adjunction, we have:

z ≤ x⇐⇒
k∨
ξ=1

C(λξ, a
ξ
j) ≤ xj , ∀j ∈ N

⇐⇒ C(λξ, a
ξ
j) ≤ xj , ∀k ∈ K,∀j ∈ N

⇐⇒ λξ ≤ I(aξj , xj), ∀j ∈ N , ∀ξ ∈ K

⇐⇒ λξ ≤
n∧
j=1

I(aξj , xj), ∀ξ ∈ K.

Thus, the largest max-C combination z =
∨k
ξ=1C(λξ,a

ξ) such that z ≤ x is obtained by

considering λξ =
∧n
j=1 I(aξj , xj) for all ξ ∈ K.

Remark 3.1. We would like to point out that the parameter λξ measures the degree of
inclusion of aξ in x in the sense of Bandler-Kohout [2].

Both max-C and min-D PFAMs belong to the broad class of fuzzy morphological asso-
ciative memories (FMAMs) because they perform elementary operations of mathematical
morphology [14]. It turns out from mathematical morphology that, given an FMAM model
W, we can construct another FMAM W∗, called the negation of W, using a strong fuzzy
negation. Precisely, the negation W∗ is defined as follows where the fuzzy negation η is
applied in a component-wise manner:

W∗(x) = η
(
W
(
η(x)

))
, ∀x ∈ [0, 1]n. (12)

The next theorem shows that the negation of a min-D PFAM is a max-C PFAM
designed for the storage of the negation of the fundamental memories, and vice-versa.

Theorem 3.4. Let a fuzzy conjunction C be connected to a fuzzy disjunction D by means
of a strong fuzzy negation η. Given a fundamental memory set A =

{
a1, . . . ,ak

}
⊆ [0, 1]n,

define B = {b1, . . . ,bk} by setting bξi = η(aξi ) for all i = 1, . . . , n and ξ = 1, . . . , k. The
negation S∗ of the min-D PFAM S designed for the storage of a1, . . . ,ak is the max-C
PFAM designed for the storage of b1, . . . ,bk, that is,

S∗(x) =
k∨
ξ=1

C(λ∗ξ ,b
ξ), where λ∗ξ =

n∧
j=1

I(bξj , xj). (13)

Analogously, the negation V∗ of the max-C PFAM V designed for the storage of a1, . . . ,ak

is the min-D PFAM defined by

V∗(x) =

k∧
ξ=1

D(θ∗ξ ,b
ξ), where θ∗ξ =

n∨
j=1

J(bξj , xj). (14)
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Proof. Let us only show (13). The second part of the theorem is derived in a similar
manner. Recalling that a strong negation is a decreasing operator and, thus, the negation
of the minimum is the maximum of the negations, we conclude respectively from (12),
(11), and (3) that

S∗(x) = η
(
S
(
η(x)

))
= η

 n∧
j=1

D(θξ,a
ξ)

 =

k∨
ξ=1

η
(
D(θξ,a

ξ)
)

=

k∨
ξ=1

C(λ∗ξ ,b
ξ),

where λ∗ξ = η(θξ) satisfies the following identities

λ∗ξ = η

 n∨
j=1

J
(
aξj , η(xj)

) =
n∧
j=1

η
(
J
(
aξj , η(xj)

))
=

n∧
j=1

I
(
η
(
aξj
)
, xj

)
=

n∧
j=1

I
(
bξj , xj

)
.

From (10), we conclude that S∗ is the max-C PFAM designed for the storage of b1, . . . ,bk.

4 Concluding Remarks

The max-C PFAMs are associative memories designed for the storage and recall of
vectors in the hypercube [0, 1]n [10]. In this paper, we introduced the class of min-D
projection fuzzy autoassociative memories (min-D PFAMs) in a manner similar to the
max-C PFAM models. Then, we provided some theoretical results concerning the storage
capacity and noise tolerance of the max-C and min-D PFAMs. In particular, we pointed
out that we can store as many vectors as desired in a max-C or min-D PFAM if the
fuzzy conjunction or fuzzy disjunction has a left identity. Also, we pointed out that these
memories models are robust in the presence of either dilative or erosive noise but they
are inefficient if the input is corrupted by both types of noise. We provided an efficient
method to computed the output of max-C and min-D PFAM models. Finally, we shows
that the negation of a min-D PFAM is a max-C PFAM designed for the storage of the
negation of the fundamental memories, and vice-versa.
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