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Abstract. This work deals with the study of a piezoelectric energy harvesting device,
aiming to identify parameters value that produce chaotic and non-chaotic behavior. Two
different initial conditions sets are analysed. For each one, bifurcation diagrams where
forcing amplitude and excitation frequency are varied, are computed and analysed, showing
the existence of chaotic and regular regions.
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1 Introduction

Harvesting devices are mechanisms which, due to its materials’ physical-chemical prop-
erties, can collect energy from abundant external sources (heat, pressure, vibration, etc),
store and convert into electrical power [6], like piezoelectric and pyroelectric ones.

Some of best applications are as alternative electrical supply for small demands, even in
nano scale as described in [2–4], boarded equipment or those placed far from distribution
regular systems, as exemplified by [7] for wireless sensors.

Among the most promising harvesting devices today are those with bi-stable configura-
tion, with the possibility of occurrence of chaos [5,8]. A look over the mathematical model
proposed by [5] shows incidence of chaos can be directly associated with its parameters
and initial conditions, what emphasizes a well-characterization system importance.
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This work concerns to study dynamic behavior of piezo-magneto-elastic energy harvest-
ing device proposed by [5], analysing its responses for different initial conditions sets and
forcing parameters, through respective bifurcation diagrams, aiming to identify regions of
values where most able to provide non-chaotic outputs.

Next section brings a objective description of device’s physical and mathematical mod-
els; third one presents computational approach adopted, solution strategy and respective
results are presented and discussed; finally, last section gathers main contributions an
conclusions of proposed study.

2 Nonlinear Dynamics Modeling

2.1 Physical model

Analysed device is depicted in Figure 1. A slim ferromagnetic cantilever beam, con-
nected to the top of rigid structure, is exposed to magnetic field effect of two magnets,
placed in the lower part of structure. An external excitation source provides vibration,
exciting beam, thus piezoelectric material plates coupled in its fixed edge, which converts
kinetics into electrical energy. Here, It is only considered displacement occurring in forcing
oscillation direction.

Figure 1: Schematic representation of the bi-stable energy harvesting device proposed by [5].
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2.2 Mathematical model

The dynamic behavior of the energy energy harvesting device is described by the
following system of ordinary differential equations (ODE) [5]

ẍ+ 2ξẋ− 1

2
x(1 − x2) − χυ = f cos Ωt, (1)

v̇ + λv + κẋ = 0, (2)

where x represents beam’s extreme displacement, ξ, the mechanical damping ratio, χ,
a piezoelectric coupling term in mechanical equation, f , the amplitude of excitation, Ω,
the forced excitation frequency, and υ, the output voltage; in electrical circuit equation,
κ means a piezoelectric coupling term and, finally, λ is a reciprocal time constant. All
parameters are dimensionless, assumed initially as Ω = 0.8, ξ = 0.01, χ = 0.05, κ = 0.5
and λ = 0.05.

For problem solution, initial conditions of displacement, velocity and voltage, respec-
tively, x0, ẋ0 and v0, will be specified in next section for different analysis set.

3 Results and Discussion

In order to integrate the initial value problem of Eqs.(1) and (2), a Runge-Kutta
method of fourth order is employed. To compute the first biffucartion diagram the pa-
rameter f is varied from 0.045 to 0.12, using 1200 evenly spaced points. Initial conditions
are assumed as x0 = 1, ẋ0 = 0, and v0 = 0; model parameters are the ones presented in
section 2.2. In Figure 2 the reader can see a comparision of this diagram and a reference
diagram obtained by [1]. This comparision is done in order to verify if the biffurcation
diagram calculation is well done.

(a) Computed by the authors. (b) Reference diagram from [1].

Figure 2: Bifurcation diagrams of forcing amplitude versus displacement. (a) Computed
by the authors. (b) Reference diagram from [1].
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Diagrams are generated for two cases for the same model parameters values from
section 2.2 and different initial conditions sets, named as no initial displacement (NID),
what means x0 = 0, ẋ0 = 1 and v0 = 1, and no initial velocity (NIV), where x0 = 1,
ẋ0 = 0 and v0 = 1, for which response behavior is analysed.

In first case, different values for excitation amplitude are taken, while other parameters
remain constant. Second case deals with it in the same way, but for different excitation
frequency values. Diagrams observable limits are empirically defined, based in those em-
ployed by [1].

In the NID case, diagrams representing different values of forcing amplitude influence
over beam extreme displacement, its velocity and output voltage are featured in Figure
3. In this case, f is taken from 0.045 to 0.12. Response does not present any chaotic
pattern, what means that with these initial conditions, regular voltage is obtained for
whole observable range of excitation amplitude.

A similar analysis with excitation frequency, ranging from 0.3 to 1.4, provides diagrams
shown in Figure 4. Here, a blurred region appears when Ω is about 0.8, characterizing
chaotic behavior. Those uniquenesses must be well known when it comes to experimenta-
tion.

Figure 3: Bifurcation diagrams of forcing amplitude versus displacement, velocity and voltage,

for x0 = 0, ẋ0 = 1, and v0 = 1.

Figure 4: Bifurcation diagrams of excitation frequency versus displacement, velocity and voltage,

for x0 = 0, ẋ0 = 1, and v0 = 1.

In NIV case, diagrams illustrating system response for different forcing amplitude and
excitation frequency are presented, respectively, in Figures 5 and 6, for the same observable
intervals of NID case.
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First one shows two chaotic regions when f varies from 0.08 to 0.11, with a regular
zone of five periods between them. Second one exhibits regular behavior for almost all
range of values, except when Ω is near of 0.8, identically to NID case.

Figure 5: Bifurcation diagrams of excitation frequency versus displacement, velocity and voltage,

for x0 = 1, ẋ0 = 0 and v0 = 1.

Figure 6: Bifurcation diagrams of excitation frequency versus displacement, velocity and voltage,

for x0 = 1, ẋ0 = 0 and v0 = 1.

4 Final Remarks

This paper analysed a harvesting device using bifurcation diagrams for two different
sets of initial conditions. For each of these, different parameters values are considered,
varying excitation frequency and amplitude, intending to characterize regions of regular
behavior.

As its main contributions can be highlighted the obtained results about system dynam-
ics, regarding excitation frequency and forcing amplitude effects over it, specially output
voltage.

In future works, authors intent to analyse how other model parameters influence the
system dynamics aiming to improve and extending device behavior characterization.
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