
Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics

Continuous-Valued Octonionic Hopfield Neural Network
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In this paper, we generalize the famous Hopfield neural network to unit octonions. In the
proposed model, referred to as the continuous-valued octonionic Hopfield neural network
(CV-OHNN), the next state of a neuron is obtained by setting its octonionic activation
potential to length one. We show that, like the traditional Hopfield network, a CV-OHNN
operating in an asynchronous update mode always settles down to an equilibrium state
under mild conditions on the octonionic synaptic weights.
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1 Introduction

The last few years witnessed an increasing interest on neural networks with values
in multidimensional domains, such as complex-valued neural networks, quaternion-valued
neural networks, octonion-valued neural networks, and networks based on Clifford alge-
bras [7, 19]. One advantage of those networks, referred to as hypercomplex-valued neural
networks, is that they treat multi-dimensional data as single entities [4,7,19]. For instance,
complex-valued, quaternion-valued, and octonion-valued neural networks are able to pro-
cess two, four, and eight dimensional data, respectively. Applications of hypercomplex-
valued neural networks include control [1, 4], color image processing [14, 17, 18], and pre-
diction [3, 16,22].

In this paper, we present an octonion-valued generalization of the Hopfield network.
The Hopfield neural network (HNN) is a single layer recurrent non-linear model which can
be used for the storage and recall of vectors [6]. Apart from the storage and recall of
vectors, the Hopfield network has been applied for solving optimization problems [8] and
in computer vision modeling [20].

There exists a vast literature on hypercomplex versions of the Hopfield network which
include generalizations using quaternions [9, 18], hyperbolic numbers [11, 12], Lie alge-
bra [21], and Clifford algebra [24]. Recently, Kuroe and Iima introduced a class of oc-
tonionic Hopfield neural networks and provided conditions for the existence of an energy
function for the stability analysis of their model [13]. On the downside, the stability of

1fidelis@ime.unicamp.br
2valle@ime.unicamp.br

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017.

DOI: 10.5540/03.2018.006.01.0344 010344-1 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0344


2

Table 1: Octonion Multiplication Table. The product between iκ and i` is situated in the
intersection of the κ-th row and the `-th column.

× i1 i2 i3 i4 i5 i6 i7
i1 −1 i4 i7 −i2 i6 −i5 −i3
i2 −i4 −1 i5 i1 −i3 i7 −i6
i3 −i7 −i5 −1 i6 i2 −i4 i1
i4 i2 −i1 −i6 −1 i7 i3 −i5
i5 −i6 i3 −i2 −i7 −1 i1 i4
i6 i5 −i7 i4 −i3 −i1 −1 i2
i7 i3 i6 −i1 i5 −i4 −i2 −1

the octonionic Hopfield networks of Kuroe and Iima is asserted by assuming that the ac-
tivation function is, among other properties, injective. It turns out that the constraints
imposed on the activation function may limit the applicability of the octonionic Hopfield
network, for instance, as an associative memory [5].

In this paper, we introduce a time-discrete neural network that can be effectively
used to implement associative memories. Specifically, we extend the continuous-valued
quaternionic Hopfield neural network (CV-QHNN) to the octonion domain [23]. The
resulting model, called continuous-valued OHNN (CV-OHNN), always settles down to an
equilibrium state under the usual conditions.

This paper is organized as follows: Next section presents basic concepts on octonions.
We introduce the CV-OHNN model and analyze its stability in Section 3. Section 4
presents some conclusions and provides perspectives of future works.

2 Basic concepts on octonions

Octonions, introduced by Graves in 1844, are 8-dimensional hyper-complex numbers
that extend the complex and quaternion number system [2]. Apart from real, complex, and
quaternion algebras, octonions form the unique normed and divisional algebra. Further-
more, although octonions are not as well known as the quaternions and complex numbers,
they have applications in fields such as string theory, special relativity, and quantum
logic [2].

An octonion x is a hypercomplex number which can be written in the form

x = x0 + x1i1 + x2i2 + x3i3 + x4i4 + x5i5 + x6i6 + x7i7, (1)

where x0, . . . , x7 are real numbers, and i1, . . . , i7, typed here using boldface letters, are
hyper-imaginary numbers that satisfy the multiplication rules given by Table 1. We denote
by O the set of all octonions.

An octonion x can also be written as x = x0 + ~x, where x0 and ~x = x1i1 + x2i2 +
x3i3 + x4i4 + x5i5 + x6i6 + x7i7 are called, respectively, the real part and the vector part
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of x. The real and the vector part of an octonion x are also denoted by Re {x} := x0 and
Ve {x} := ~x.

We would like to recall that the octonion algebra is neither commutative nor asso-
ciative. Indeed, we have iκi` = −i`iκ for κ 6= ` and (iκi`)iν = −iκ(i`iν) 6= iκ(i`iν) for
κ 6= ` 6= ν. Since the octonion algebra does not enjoy the associative property, it is not
a Clifford algebra. Although the algebra of the octonions is not associative, the identity
Re {(xy)z} = Re {x(yz)} holds true for any x, y, z ∈ O. This is an important property
that we will use for the analyze of stability of the proposed CV-OHNN model.

The sum of two octonions is the octonion obtained by adding their corresponding
components. The conjugate and the norm of an octonion x, denoted respectively by x̄ and
|x|, are defined by

x̄ = x0 − ~x and |x| =
√
x̄x =

√
x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27. (2)

We say that x is a unit octonion if |x| = 1. The set of all unit octonions is denoted by S7,
i.e., S7 = {x ∈ O : |x| = 1|}. Geometrically, S7 can be regarded as an hypersphere in R8.

3 Continuous-valued Octonionic Hopfield Neural Network

The neural network proposed by Hopfield (HNN) in 1982 have been designed to process
n-bit vectors. Over the years, the Hopfield network has been generalized to work with
models that treat multidimensional data as a single entity [9,10,13,15,23]. In this paper, we
introduce the continuous-valued octonionic Hopfield neural network (CV-OHNN), which
generalizes the Hopfield model to process vectors whose components are unit octonions.
The novel CV-OHNNs can be used, for instance, to implement an associative memory
designed for the storage and recall of vectors on Sn7 . A CV-OHNN is defined as follows:

Definition 3.1 (Continuous-Valued Octonionic Hopfield Neural Network). Let wij ∈ O,
for i, j = 1, . . . , n, denote the octonionic synaptic weight of the network. Given an input
x(0) = [x1, . . . , xn]T ∈ Sn7 , we define recursively the sequence of octonion-valued vectors
x(0),x(1),x(2), . . . as follows

xi(t+ ∆t) =


vi(t)

|vi(t)|
, vi(t) 6= 0

xi(t), otherwise,
(3)

where

vi(t) =
n∑
j=1

wijxj(t), (4)

is the activation potential of the ith neuron at iteration t.

Remark 3.1. Throughout the paper, we assume that all the neurons of the CV-OHNN
are updated asynchronously in one time unit. Thus, we have ∆t = 1/n.
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Inspired by [13], we analyze the dynamics of the CV-OHNN model by means of the
energy function

E(x(t)) = −1

2

n∑
i=1

n∑
j=1

Re {(x̄i(t)wij)xj(t)} . (5)

We know that the sequence {x(t)}t≥0 produced by the CV-OHNN is convergent if the
strict inequality

∆E(t) = E(x(t+ ∆t))− E(x(t)) < 0,

holds true whenever x(t+ ∆t) 6= x(t). In this case, the time evolution of the CV-OHNN
yields a minima of (5). In other words, the network settles down to a stationary state.

Theorem 3.1. The sequence produced by (3), in an asynchronous update mode, is con-
vergent for any initial state x(0) ∈ Sn7 if the synaptic weights satisfy wij = w̄ji and wii ≥ 0
for any i, j ∈ {1, . . . , n}.

Proof. First of all, from (5) we conclude that the energy function E is real-valued. Fur-
thermore, it is not hard to shown that E is bounded from below.

Let us now show that E is strictly decreasing along any non-stationary trajectory.
Since we adopted asynchronous update mode, we may suppose that only the kth neuron
changed its state at iteration t, that is, we assume that xj(t + ∆t) = xj(t) for all j 6= k
and xk(t+ ∆t) 6= xk(t). The energy function given by (5) evaluated at x(t) and x(t+ ∆t)
satisfy respectively

E(x(t)) =− 1

2

∑
i 6=k

∑
j 6=k

Re {(x̄i(t)wij)xj(t)}+ Re {(x̄k(t)wkk)xk(t)}

+
∑
j 6=k

Re {(x̄k(t)wkj)xj(t)}+
∑
i 6=k

Re {(x̄i(t)wik)xk(t)}

 ,

and

E(x(t+ ∆t)) =

− 1

2

∑
i 6=k

∑
j 6=k

Re {(x̄i(t+ ∆t)wij)xj(t+ ∆t)}+ Re {(x̄k(t+ ∆t)wkk)xk(t+ ∆t)}

+
∑
j 6=k

Re {(x̄k(t+ ∆t)wkj)xj(t+ ∆t)}+
∑
i 6=k

Re {(x̄i(t+ ∆t)wik)xk(t+ ∆t)}

 .

By hypothesis, wkk = w̄kk. Thus, wkk is a real number. Moreover, we know that xk(t)
and xk(t+ ∆t) are unit octonions, i.e, |xk(t)| = |xk(t+ ∆t)| = 1. Therefore, we have

Re {(x̄k(t)wkk)xk(t)} = Re {(wkkx̄k(t))xk(t)} = wkkRe {x̄k(t)xk(t)} = wkk|xk(t)|2 = wkk.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0344 010344-4 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0344


5

Similarly, the identity Re {(x̄k(t+ ∆t)wkk)xk(t+ ∆t)} = wkk holds true. Therefore, the
variation of the energy at time t satisfies

∆E = E(x(t+ ∆t))− E(x(t))

= −1

2

∑
j 6=k

(x̄k(t+ ∆t)− x̄k(t))(wkjxj(t)) +
∑
i 6=k

(x̄i(t)wik)(xk(t+ ∆t)− xk(t))

 .
From the equality wij = w̄ji, we conclude that the conjugate of

∑
i 6=k

x̄i(t)wik(xk(t+ ∆t)−

xk(t)) is
∑
j 6=k

(x̄k(t+∆t)− x̄k(t))wkjxj(t). In addition, we are able to express ∆E by means

of the equation

∆E =− Re

(x̄k(t+ ∆t)− x̄k(t))
∑
j 6=k

wkjxj(t)


= −Re {(x̄k(t+ 1)− x̄k(t))(vk(t)− wkkxk(t))} ,

where vk(t) =

n∑
j=1

wkjxj(t) is the activation potential of the kth neuron at iteration t.

As we are considering xk(t + 1) 6= xk(t), we must have vk(t) 6= 0. Moreover, we have
from (3) that vk(t) = Axk(t+ 1), where A = |vk(t)| > 0. Thus, we conclude that

∆E =− Re {(x̄k(t+ ∆t)− x̄k(t))(Axk(t+ ∆t)− wkkxk(t))}
=− Re {A(x̄k(t+ ∆t)− x̄k(t))xk(t+ ∆t) + wkk(x̄k(t)− x̄k(t+ ∆t))xk(t))}
=− [ARe {1− x̄k(t)xk(t+ ∆t)}+ wkkRe {1− x̄k(t+ ∆t)xk(t)}]
=− (A+ wkk) (1− Re {x̄k(t)xk(t+ ∆t)}) .

Now, from Cauchy-Schwarz inequality, we derive

Re {x̄k(t)xk(t+ ∆t)} = xk0(t)xk0(t+ ∆t) + xk1(t)xk1(t+ ∆t) + xk2(t)xk2(t+ ∆t)

+ xk3(t)xk3(t+ ∆t) + xk4(t)xk4(t+ ∆t) + xk5(t)xk5(t+ ∆t) + xk6(t)xk6(t+ ∆t)

+ xk7(t)xk7(t+ ∆t) < |xk(t)||xk(t+ ∆t)| = 1,

because xk(t + 1) and xk(t) are not parallel vectors in R8. Therefore, the inequality
1 − Re {x̄k(t)xk(t+ ∆t)} > 0 holds. Since A > 0 and wkk ≥ 0, A + wkk is also positive.
Consequently, we have ∆E < 0 if xk(t + ∆t) 6= xk(t) for some index k ∈ {1, 2, . . . , n}.
Hence, the network in asynchronous update mode settles down to a stationary state.

4 Concluding Remarks

In this paper we introduced the continuous-valued octonionic Hopfield neural network
(CV-OHNN). In few words, the CV-OHNN is based on the activation function that normal-
izes the potential of activation to length one. As a consequence, this octonionic network

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0344 010344-5 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0344


6

can be implemented and analyzed easily. Indeed, we presented an energy function for
the CV-OHNN based on [13]. Also, we showed that this real-valued bounded function
is strictly decreasing along any non-stationary trajectory. Therefore, the network using
asynchronous update always settles down to an equilibrium state.

In the future, we plan to investigate the performance of this model as an associative
memory. In particular, we also plan to study its storage capacity and noise tolerance.
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