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Abstract. In this paper a parametric analysis of a sample of responses of a dry-friction
oscillator is performed in order to construct a statistical model. The system consists of a
simple oscillator moving on a base with a rough surface. Due to this roughness, the mass
is subject to a dry-frictional force modeled as a Coulomb friction. It is considered that the
base has an imposed stochastic bang-bang motion which excites the system in a stochastic
way and, induces stochastic stick-slip oscillations. The base velocity is modeled by a Poisson
process for which a probabilistic model is fully specified. The system response is composed
by a random sequence alternating stick and slip-modes. With realizations of the system, a
statistical model is constructed for this sequence. Statistics and histograms of the random
variables which characterize the stick-slip process are estimated. The objective of the paper
is to analyze how these estimated statistics and histograms vary with the system parameters,
i.e., to make a parametric analysis of the statistical model of the stick-slip process.
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1 Introduction

Dry-friction appears in several situations, as in drilling process and in mechanical gear
systems. Despite the great number of papers in the area, few of them address the problem
with a stochastic approach. The majority of the references only uses a deterministic
approach. They do not discuss or quantify the uncertainties that are involved in the
dynamics, although the dry friction force itself presents an inherent random behavior [1].
Therefore, a stochastic approach is the ideal way to address problems with dry-friction.

In this paper, we analyze the dynamics of a dry-friction oscillator which moves over a
base with a rough surface. The base has an imposed stochastic bang-bang motion which
excites the system in a stochastic way. The non-smooth behavior of the dry-friction force
[2] associated with the non-smooth stochastic base motion induces in the system stochastic
stick-slip oscillations. The system response is composed by a random sequence alternating
stick and slip-modes. To characterize it, we construct a statistical model, in which the
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variables of interest of the random sequence are modeled as random variables [3, 4]. To
estimate statistics and histograms of the system responses, samples of the random sequence
of stick and slip-modes are computed by the integration of the dynamic equation of the
system using independent samples of the base motion. The objective of the paper is to
analyze how the estimated statistics and histograms vary with the system parameters, i.e.,
to make a parametric analysis of the statistical model of the stick-slip process.

2 Dynamics of a stick-slip oscillator

The system analyzed is composed by a simple oscillator (mass-spring) moving on a
rough surface, as shown in Fig. 1. The roughness induces a dry-frictional force between

Figure 1: Stick-slip oscillator.

the mass and the base which is modeled as a Coulomb friction. Due to this friction model,
the resulting motion of the mass can be characterized in two qualitatively different modes:
the stick-mode (in which the mass and base have the same velocity during an open time
interval) and the slip-mode, in which mass and base have different velocities. The position
of the mass over the base is represented by x and its equation of motion is

m ẍ(t) + k x(t) = f(t) , (1)

where m is the mass, k is the spring stiffness and f is the frictional force between mass
and base. During the slip-mode, it is assumed that f(t) = mgµ sgn(v(t)− ẋ(t)), where v is
the base speed, g is the acceleration of gravity and µ is the friction coefficient (assumed to
be constant). Thus, during the slip-mode, the value of the frictional force, f , is known. Its
absolute value is equal to the maximum friction force, fmax = µmg. During the stick-mode,
ẋ(t) = v(t), and thus equation of motion Eq. (1) can be rewritten as mv̇ + k x(t) = f(t).
The value of the frictional force during the stick-mode varies and it is confined to the
interval −fmax ≤ f ≤ fmax. When the base speed is constant in time, during the stick-
mode we have −fmax ≤ k x(t) ≤ fmax. Then, once in a stick-mode, the mass stays moving
with the base until x(t) = mgµ

k
in case of positive base velocity, or until x(t) = −mgµ

k

in case of negative base velocity. Observe that during the stick-mode, the modulus of
the elastic force increases up to the limit value |fmax|. Remark that the duration of the
stick-mode is bounded and its maximum value is dmax = 2mgµ

k v
. For the slip one can make

no prediction, in principle it can last forever.

3 Construction of a probabilistic model for the base motion

Considering that the dry-friction oscillator has an imposed stochastic bang-bang mo-
tion, we propose to model its velocity as a Poisson process, with constant rate λ, rep-
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resented by V. We consider that V is constant by parts and assumes only two values:
1, 0 m/s and −1, 0 m/s. A realization of such stochastic process consists of point events in
time which represents the instants in which occur changes of the velocity sign of the base
motion. The parameter λ represents the expected value of number of changes per unit of
time. As V is modeled as a Poisson process, the instants of change are given by random
variables which can be ordered as 0 < Y1 < Y2 < Y3 < . . .. From this sequence, it is possi-
ble to define the independent random variables W1 = Y1 and Wj = Yj − Yj−1, with j ≥ 2.
Each of them has exponential probability density function pWj

(t) = 1 [0,∞ )(t)λ e
−λt , with

mean 1/λ. The random variable Wj , with j ≥ 2, indicates the waiting time between
two consecutive change of the velocity sign of the base motion. Observe that a higher λ
corresponds to a smaller average waiting time. The first change is at W1, the second at
W1+W2, et cetera. Due to the bang-bang base motion, if the mass is in the stick-mode in
the instant just before the discontinuity on the base velocity, it must be in the slip-mode in
the instant just after the discontinuity. Thus, the stick is interrupted by the discontinuities
on the base velocity, as if the dynamics were reinitialized; all previous information lost.

4 Construction of a statistical model of the stick-slip pro-

cess

As it was assumed that the base motion is uncertain, the response of the stochastic
stick-slip oscillator is a random process which presents a sequence alternating stick and
slip-modes. Defined a time interval for analysis, the variables of interest in the dynamics
are modeled as stochastic objects. We have two discrete random variables, which are the
number of time intervals in which stick occurs (ST ) and the number of time intervals in
which slip occurs (SL). We have also discrete random processes, which are the instants at
which the sticks begin (T1, · · · , TST

, where the subscripts 1, · · · , ST indicate the order that
they occur), the duration of the sticks (D1, · · · , DST

), the instants at which the slips begin
(L1, · · · , LSL

) and, the duration of the sticks (H1, · · · , HSL
). Figure 2 shows a sketch of

the sequence of sticks and slips in the system response. Observe that we count the first
slip just after the first stick.

Figure 2: Sketch of the sequence of sticks and slips in the system response with ST = SL.

5 Strategy for parametric analysis

Two system parameters are considered in the parametric analysis of the statistical
model of the stick-slip process. One of them is related to the probabilistic model of the
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base motion λ and the other is the friction coefficient µ of the friction force. We performed
numerical simulations combining different values of these parameters. To λ, 40 values were
selected nonuniformly in the interval [0.1, 30, 0]. To µ, 8 values were selected nonuniformly
in the interval [0.5, 7, 0]. For each combination of λ and µ, the dynamics equations were
integrated 2,000 times using independent realizations of the base movement. A previous
convergence study was developed to determine the acceptable number of realizations. In
total, 640, 000 integrations were performed. In order to compute all these integrations,
we adopted the strategy of parallelization of the simulations. Using a cluster composed
of sixteen computers, as shown in Fig. 3, the computation time necessary to perform
the 640, 000 integrations was approximately 55, 5 days. Without the parallelization, it
would be need approximately 2, 5 years to compute the integrations, which is infeasible.
For computation, duration ta was chosen as 50 seconds. For the integration, it was used
the function ode45 of the Matlab software, which applies the Runge-Kutta 4th/5th-order
method as time-integration scheme with a varying time-step algorithm. The maximal step
size is equal to 10−4 seconds, and the relative and absolute tolerance are equal to 10−9.
The values of the parameters are m = 1.0 kg and k = 4.0 N/m. The initial conditions
of the system were modeled as independent random variables, uniform distributed over
[−1, 1].

Figure 3: Parallelization of the simulations in the parametric analysis.

6 Influence of λ in the statistical model

First, we analyzed the influence of λ in the statistical model of the stick-slip process for
a fixed value of µ. We took µ = 5.0. In [3], it is possible to verify that for a fixed value of λ
the duration of sticks are identically distributed. Then, we take D1, · · · , DST

as identically
distributed random variables and, we call them as D. To understand the influence of λ
in D, we investigated the variation of the normalized histograms for different values λ
between 0.1 1/s and 10.0 1/s. The results are shown in Fig. 4. For λ = 0.1 1/s, we verify
that the normalized histogram of D has one pick near to the maximum stick duration,
which is dmax = 2mgµ

k v
= 2.5 s. However as λ grows, this peak disappears, and the support

of the normalized histogram is reduced. We conclude that the estimated mean of the stick
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duration decreases as λ grows. To quantify this decay, we plotted the estimated mean of
the stick duration µ̂D as a function of λ, shown in Fig. 5.
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Figure 4: Normalized histograms constructed with 2, 000 samples of the duration of the
first stick for six different values of λ.
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Figure 5: Estimated mean of the stick duration, µ̂D, and 95 % confidence interval as a
function of λ.

The graph of the estimated mean of the number of sticks divided by the duration
ta, as a function of λ is shown in Fig. 6(a). Observing it, we verify that the mean of
the total number of sticks increases as λ grows. As we known from Fig. 5 that the stick
duration decreases as λ grows, we conclude that as λ grows, the system response presents
on average a higher number of sticks, but these sticks have on average a lower duration.
Given that, we may ask what happens with the total time of stick as λ grows. Computing
the sum of the duration of all sticks, and dividing it by the duration ta, we get the total
time of stick in relation to the time interval analyzed. We call this random variable R.
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The question is what happens with the mean of R when λ grows. Is it possible that,
on average, a higher number of sticks with lower duration give us a higher total time of
stick than a lower number of sticks with a higher duration? To answer this question,
we plotted the estimated mean of R as function of λ. The obtained graph is shown in
Fig. 6(b). Observing it, we verify that the mean of total time of stick reaches a maximum
value, µ̂⋆

R, which is almost 80% and occurs at λ = 3.8 1/s. The conclusion is that for
λ ∈ [0.5, 3.8] 1/s, the increase of the number of sticks causes the increase of the total
time of stick, even though the sticks have a lower duration. The larger number of sticks
compensates its shorter duration. However, when λ exceeds 3.8 1/s, the increase of the
number of sticks compensates no more the reduction of its duration, so µ̂⋆

R decreases.
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Figure 6: (a) Estimated mean of the number of sticks, and 95 % confidence interval as a
function of λ. (b) Estimated mean of the total stick duration, µ̂R, and 95 % confidence
interval as a function of λ.

7 Influence of the friction coefficient on the statistical model

To quantify the influence of µ on the statistical model of the stick-slip process, we
analyzed the graph of the estimated mean of the total time of stick µ̂R as a function of
λ, Fig. 7. Observing it, we verify that the maximum of the estimated mean of total time
of stick, µ̂⋆

R, grows as µ increases. For µ = 0.5, the maximum is 15.0%, and for µ = 7.0,
the maximum is 81.89%. Besides, we verify also that the maximum is always reached for
λ in the short interval [3.5, 3.8] 1/s. From these results, we conclude that the friction
coefficient has a lot of influence on µ̂R. However, very little influence on the position of
the maximum.

8 Conclusions

The obtained results showed that the normalized histograms of the stick duration are
sensitive to variations on λ and µ. As λ grows, the estimated mean of the stick duration
decreases. Besides of this, the system response presents on average a higher number of
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Figure 7: Estimated mean of the total stick duration µ̂R as a function of λ for different
values of µ. The µ̂⋆

R is highlighted for each µ with markers.

sticks, however these sticks have on average a lower duration. The relative total time of
stick, R, showed that for λ lower than approximately 3.8 1/s, the increase of the number
of sticks causes the increase of the total time of stick, even though the sticks have a
lower duration, in a way that the large number of sticks compensates its shorter duration.
However, when λ exceeds approximately 3.8 1/s, the increase of the number of sticks does
not compensate the reduction of its duration anymore, so the total time of stick decreases.
From the analysis of the influence of µ, we concluded that maximum of the estimated
mean of total time of stick, µ̂⋆

R, grows as µ increases. However, the value of µ does not
change the behavior of R in relation to the position of its maximum.
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