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Parameter identification in medical imaging
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Abstract. Positron Emission Tomography is an imaging technique applied in nuclear
medicine able to produce images of physiological processes in 2D or 3D. The use of 18F-FDG
PET is now a widely established method to quantify tumor metabolism, but other inves-
tigations based on different tracers are still far from clinical use, although they offer great
opportunities such as radioactive water as a marker of cardiac perfusion. A major obstacle is
the need for dynamic image reconstruction from low quality data, which applies in particular
for tracers with fast decay like H15

2 O. The aim of this work is to discuss potential advances in
Positron Emission Tomography kinetic models and direct reconstruction of kinetic parame-
ters. We derive a set of differential equations able to represent the kinetic behavior of H15

2 O
PET tracers during cardiac perfusion. In this model one takes into account the exchange of
materials between artery, tissue and vein which predicts the tracer activity if the reaction
rates, velocities, and diffusion coefficients are known. The computation of these distributed
parameters as a nonlinear inverse problem, which we solve using variational regularization
approaches. For the minimization we use Forward-Backward Splitting.

Key Words. Dynamic Positron Emission Tomography, Parameter Identification, Inverse
Problems, Imaging, Forward-Backward Splitting, Regularization Theory.

1 Introduction

Positron Emission Tomography is an imaging technique applied in nuclear medicine
able to produce images of physiological process in 2D or 3D. In comparison to other imaging
techniques with higher spatial resolution, the major advantage of the PET procedure is the
high sensitivity and ability for quantitative measurement, making it possible to visualize
and to examine specific physiological effects inside the body.

Besides from being a minimally invasive examination and therefore causing less patient
discomfort, PET allows the development of better diagnostic imaging, detecting and moni-
toring the activity of malignant tumors, as well as a better treatment of patients. Many
methods to analyze PET data have been developed based on compartmental models such
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as cerebral oxygen utilization [13], neuroreceptor ligand binding [12] and the quantification
of blood flow [1,2, 9, 11].

A short-lived radioactive tracer isotope (γ-type) is injected usually into blood circula-
tion that interacts into the body and after decay it produces a pair of photons that are
detected during a PET-scan. Roughly speaking, dynamic PET reconstruction involves the
inversion of the Radon Transform K

(Ku)(θ, s; t) =

∫
x·θ=s

u(x, t)ds(x), u = G(p), (1)

with the image u at time t to be constrained by a physiological model, involving physi-
ological parameters p(x) and an operator G that produces an image sequence. Our next
step is to create the Inverse Problem associated to this work.

Inverse Problems are focus of current research interest in industrial applications (as the
identification of parameters in industrial processes) [4, 5, 7], applications to geophysics [8,
18], tomography and medical sciences (detection of tumors and fractures) [3,10,14,15]. But
the biggest disadvantage of working with inverse problems is that the data f are corrupted
by noise, especially, because the problem is usually ill-posed in the sense of Hadamard [6].
One problem is called well-posed if it satisfies the conditions of existence, uniqueness and
continuous dependence on data. If any of these requirements is not satisfied, the problem
is called ill-posed. This instability and ill-conditioning must be overcome if we want to
solve the inverse problem satisfactorily. This problem is also transferred to a nonlinear
parameter identification problem which we add regularization methods to each biological
parameters (that we want to reconstruct) independently and to transform the ill-posed
problem in a well-posed.

Thus, we can directly formulate the nonlinear inverse problem

℘(KG(p)) = f,

where f(θ, y) denotes the PET sinograma data and ℘ the Poisson statistics. A solution
for this inverse problem is given via the minimization

u ∈ arg min
u∈Ω

{∫
Ω

Ku− flog(Ku)dσ(θ, y)

}

⇒ u ∈ arg min
u∈Ω

{∫
Ω

flog

(
f

Ku

)
+Ku− fdσ(θ, y)dσ(θ, y)

}
.

(2)

For the minimization we apply a Forward Backward-Splitting method with variable step-
size,

uk+ 1
2
∈ {uk − τk∂uF (uk)}; uk+1 ∈ {uk+ 1

2
− τk∂uH(uk+1)}. (3)

The first-half step can be realized via the well-known EM iteration to reconstruct the
image u(x, t) by

uk+ 1
2

=
uk
K∗1

K∗
(

f

Kuk

)
. (4)
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The second half-step is a parameter identification problem, formulated as the constrained
optimization problem with added regularization

IM(u) +R(p)→ min
p
,

IM(u) =
1

2

T∫
0

∫
Ω

(
G(p)− uk+ 1

2

)2

uk
dxdt for all x ∈ Ω× [0, T ],

(5)

with some functional IM representing the image reconstruction process and R denoting
the gradient and a-priori regularization functional to each parameter independently (to
force well-posedness).

2 Kinetic Modelling

To represent the kinetic behavior of H15
2 O PET, during the cardiac perfusion, we use

the following Differential Equations [16]

∂CA
∂t

= −k0(x)CA(x, t)− k1(x)CA(x, t) + k3CV(x, t)

+∇ · (VA(x)CA(x, t)) +∇ · (DA(x)∇CA(x, t)),
(6)

∂CT
∂t

= −k0(x)CT (x, t) + k1(x)CA(x, t)− k2CT (x, t)

+∇ · (VT (x)CT (x, t)) +∇ · (DT (x)∇CT (x, t)),
(7)

∂CV
∂t

= −k0(x)CV(x, t)− k3(x)CV(x, t) + k2CT (x, t)

+∇ · (VV(x)CV(x, t)) +∇ · (DV(x)∇CV(x, t)),
(8)

subject to the boundary conditions

(D∇CA/T /V + V CA/T /V) · n = jin Γ ⊂ ∂Ω jin = const · V,
(D∇CA/T /V + V CA/T /V) · n = CA/T /VVout ∂Ω/Γ.

(9)

Here, CA(x, t), CT (x, t) and CV(x, t) represent the radioactive concentrations in the artery,
tissue and vein, respectively and const is a constant.

This model differs from others currently found in the literature because here we also
consider the contributions due to transport and diffusion. For these, DA, DT , DV , VA,
VT , VV are the parameters of diffusion and velocity, in the artery, tissue and vein. All
these parameters are written only in function of spatial coordinates, independent of time.
The portions k0CA, k0CT and k0CV represent the radioactive decay of the compound.
The constants k1, k2 and k3 represent the exchange of fluids between the artery, tissue
and vein.

Considering the above equations, we want reconstruct the image u such that u(x, t) is
the sum of the CT (x, t), CV(x, t) and CA(x, t), with

p = (k1(x), k2(x), k3(x), DT (x), DA(x), DV(x), VT (x), VA(x), VV(x))

and all functions being nonnegative.
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3 Discretization of the Differential Equations

We want to discuss in this section the discretization of the differential equations which
describe the problem. For this, consider the following system, spatially dependent on x
and y and temporal dependent on t:

∂C

∂t
= ∇((V (x)C) + (D(x)∇C))

+

 −diag(k0 + k1) k3 0
0 −diag(k0 + k3) k2

k1 0 −diag(k0 + k2)

C,
(10)

where C =

 CA
CV
CT

, D =

 DA
DV
DT

 and V =

 VA
VV
VT

.

We discretize the first time derivative with the operator splitting method using the
notation C(tk) = Cτ (k). Then we obtain

(i)
Cτ
(
k + 1

3

)
− Cτ (k)

τ
=

∂

∂x

(
Dx

∂Cτ

∂x

(
k +

1

3

)
+ VxC

τ

(
k +

1

3

))
, (11)

(ii)
Cτ
(
k + 2

3

)
− Cτ

(
k + 1

3

)
τ

=
∂

∂y

(
Dy

∂Cτ

∂y

(
k +

2

3

)
+ VyC

τ

(
k +

2

3

))
, (12)

(iii)
Cτ (k + 1)− Cτ

(
k + 2

3

)
τ

= RCτ (k + 1) (13)

where the matrix R =

 −diag(k0 + k1) k3 0
0 −diag(k0 + k3) k2

k1 0 −diag(k0 + k2)

 .

4 Results

4.1 Example of Parameter Identification on Real PET-System

In the following we present an example in order to analyze the reconstruction of the
parameters for a specific case. Thus, we use an operator K (16512 x 4225) associated with
the PET-real image given by the following figure:
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Figure 1: Synthetic image. Forward operator K from real PET scanner

By a given K we are able to produce an image that represents the behavior of real
H15

2 O-PET-scan data. For this case we use an image 65 x 65 pixels, in domain Ω. For the
radioactive concentration CA in the artery we use for the initial function

CA(x, y, 0) = τ(1− x2)(N − y)y; (14)

with N = 50 and the time step τ = 3 · 10−5.

As in the previous example, the radioactive concentration in the tissue and in vein
at the beginning are zero and the used method to solve numerically we use the Forward-
Backward splitting. All the biological parameters involved are given by the following table.

Here we also evaluate the behavior of radioactive flow when some interval of k1 e k2 is

Table 1: Input data for a first real example.

Parameter Initial Value (·)∗ A-priori Gradient
Regularization (α) Regularization (ξ)

k1(∗)(1/cm) 0.9 (0) 0.89 0.017148965 0.0008

k2(∗)(1/cm) 0.75 (0) 0.7 0.015801553 0.0001

k3(1/cm) 0.9 0.85 0.01648965 0.0001

VxA(cm/s) 0.0001 0.1 0.001024495 0.0001

VyA(cm/s) 700 15 1.1000 0.0001

VxT (cm/s) -50 -5 1.122098745999 0.0001

VyT (cm/s) 0.0001 0.1 0.001024495 0.0001

VxV (cm/s) 0.0001 0.1 0.001024495 0.0001

VyV (cm/s) 700 15 1.1000000001 0.0001

DA(cm2/s) 3 ∗ 10(−7) 10(−3) 0.0003344 0.000444

DT (cm2/s) 3 ∗ 10(−6) 10(−2) 0.000344 0.000444

DV(cm2/s) 3 ∗ 10(−7) 10(−3) 0.0003344 0.000444

equal to zero and therefore, in the above table, the symbol (∗) refers to the fact that k1

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0416 010416-5 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0416


6

and k2 are not considered constant across the region of interest. When k1 = k2 = 0 there
is no exchange of materials from the artery to the tissue and from the tissue to the vein,
and this means that the radioactive concentration (in this region) in the tissue and in the
vein are zero.

The following figures refer to the reconstruction of biological parameters for real PET-
data:

Figure 2: Reconstruction of k1 Figure 3: Reconstruction of VyA

5 Conclusion

We have proposed a novel approach for quantitative PET, which is capable of compu-
ting parameter reconstructions in presence of flow conditions and we presents the compu-
tational tests. The numerical tests presented good accuracy in the reconstruction of the
biological parameters when compared to the real values. Future studies aim to add to the
proposed model for a new spatial dimension, making it more realistic.
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