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Abstract. In this work, we propose a new basic mathematical model for Behavioral Epide-
miology. It is based in a SIRS epidemiological model and in the Replicator Equations. We
use numerical simulations to explore some distinguished characteristics of the model.

Palavras-chave. Behavioral Epidemiology, SIRS model, Replicator Equations.

1 Introduction

The key issue in behavioral epidemiology is to understand how populational beha-
vior is related with the development of diseases. In particular, the relationship between
behavioral changes and the dynamics of infectious diseases is a fundamental question.

Mathematical modeling in epidemiology, is already a well established practice [1] and
though mathematical modeling in behavioral epidemiology is not a new field [2], has not
been explored in the same way. In this work, we propose a basic model to consider
epidemiological and behavioral factors simultaneously and explore numerically some of its
distinguished characteristics.

In the following sections we rapidly review some basic epidemiological model as well
as one of the most used models in behavioral dynamics: the Replicator Equations. Later,
based on those ideas we propose a basic behavioral epidemiological model and consider
numerical simulations to explore some of its properties.

2 SIRS Epidemiological Model

One of the most basic epidemiological model for infectious diseases is the SIR model.
There are several models that can be found on the literature under this name, but all of
them are based on the idea of dividing a population into three classes: susceptible, infected
and recovered [1]. Some models describe how the fraction of a population in each of these
classes changes with time. Alternatively the model can consider the number of individuals
in each class. Classical SIR model consider that the disease is not lethal and that total
population remains constant. Over a sufficiently short time scale, this last assumption is
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reasonable, but to capture the dynamics over the longer term this assumptions must be
overruled. Several refinements of the SIR model are possibles but in this work we consider
a SIRS model with death and birth rates such that if S, I, R refer to the population in
each compartment, and N = S + I + R is the total population, these variables change
according to the following system of differential equations:

dS

dt
= µBN −

β S I

N
− µD S + κR

dI

dt
=

β S I

N
− γ I − µD I

dR

dt
= γ I − µD R− κR.

(1)

Here, γ represents the recovery rate, the force of infection is given by β I
N

and repre-
sents the rate of susceptible individuals that became infected. The parameter β can be
interpreted as the contact rate of infection. The parameters µB, µD represents birth and
death rate respectively and most models consider µB = µD. The parameter κ represents
the rate of going from recovered to susceptible status. In general, models based on the
SIR model predict asymptotic convergence to an equilibrium state. The SIRS model also
has these characteristic but show some oscillatory behavior at earlier times. Some typical
trajectories for SIRS models are presented in the Figure 1.
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Figura 1: Trajectories for SIRS Model with µB = µD = 0.016, γ = 0.3, β = 0.6, κ = 0.01, S(0) =

499, I(0) = 1, R(0) = 0.
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3 Replicator Equations

The continuous replicator equations are a set of differential equations originally used
in evolutionary game theory to represent the evolution of mutually exclusive strategies
or behaviors across a population of non-necessarily rational individuals [3]. It is based
on the idea that the success of a strategy in the population, relies on how the strategy
payoff compares with others payoff, given a current distribution of strategies. In this
sense, replicator equations try to mimic the evolutionary process of survival of the fittest.
Assume xi is the proportion of the population following behavior i and fi(x) is the payoff
of following strategy i when the behavioral distribution is x = (x1, . . . , xn)

′. The replicator
equations are defined by the following system of differential equations:

dxi

dt
= xi[fi(x)− f(x)] (2)

where f(x) is the average population payoff (fitness) defined by f(x) =
∑n

i=1
xifi(x).

System 2 means that the per capita rate of growth for followers of strategy i, depends
on the difference between the current payoff fi and the current average payoff f . In some
situations, the payoff is assumed to depend linearly upon the population distribution,
which allows the replicator equations to be written in the form:

dxi

dt
= xi

(

(Ax)i − xTAx
)

, (3)

where the payoff matrix A holds all the payoffs information for the population. The
(expected) payoff fi(x) of strategy i, is given by (Ax)i and the average population payoff
f(x) is given by xTAx [3].

As an example of the replicator equation applied to an evolutionary game, we present
the evolutionary version of the well-known game called Rock-Scissor-Paper. In this game,
the members of the population are continuously playing in one-to-one random encounters
between anonymous players. At every time a player can choose some of the strategies:
(R) Rock, (S) Scissors, or (P) Paper. The payoffs for the one-to-one encounters are given
in the matrix:

A =





Rock Scissor Paper

Rock 0 1 −1
Scissor −1 0 1
Paper 1 −1 0



. (4)

A player using strategy i against a player using strategy j get a payoff given by aij ,
so for example, an encounter between a Paper player and Rock player, results in a payoff
of 1 unity for the Paper player and -1 for the Rock player. Replicator equations pretend
to describe how the distribution of strategies are evolving. In a population with a initial
majority of Rock players, the best strategy would be to play Paper, so the population tend
to evolve to this behavior. With a majority of Paper players, this is strategy is no longer
the best one, but instead Scissors players should start to increase. When the replicator
equations (3) are applied to this game, the strategies behave in cyclical trajectories and
have a periodic behavior, so the states x1, x2 and x3 are the parametric equations of a
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closed trajectory contained on the set {x = (x1, x2, x2) ∈ R
3 : xi ≥ 0, x1 + x2 + x3 = 1}.

Typical trajectories are pictured in the Figure 2.
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Figura 2: Trajectories for the Rock-Scissor-Paper Game with Replicator Equation with x1(0) =

0.5, x2(0) = 0.4, x3(0) = 0.1.

4 A Basic Model for Behavioral Epidemiology

Based on the SIRS model and on the Replicator Equations we can consider a basic
model for behavioral epidemiology. Besides the epidemiological variables X = (S, I,R),
we consider three mutually exclusive behaviors B1, B2 and B3. We are going to assume
initially that the behaviors B1, B2 and B3 are related respectively to avoiding infection,
increasing recovery after infection, and increasing immunization after recovery. We are
assuming also that every member of the population is following one and only one of the
possibles strategies. If xi refer to the proportion of population following the behavior Bi,
we propose the following model:

dS

dt
= µBN −

(1− x1)β S I

N
− µD S + (1− x3)κR

dI

dt
=

(1− x1)β S I

N
− x2 γ I − µD I

dR

dt
= x2 γ I − µD R− (1− x3)κR.

dxi

dt
= xi[fi(x,X)− f(x,X)] n = 1, 2, 3.

(5)

This model can be seen first as an SIRS model for the epidemiological variables, where
the transition rates are influenced by behavioral variables xi. So for example, the infection
parameter β is being multiplied by (1−x1) in the first and second equation, which means
that if 100 percent of the population follows the behavior B1 there would be not new infec-
ted. In the same way, if all population follows behavior B2, the recovery rate is increased,
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as is implied by the term x2 γ I, in the second and third equation. If all population follows
behavior B3, then there will be full immunization described by the term (1−x3)κR in the
first and third equation. Finally, the last equation set that the replicator equations is used
for the behavioral variables xi, and also that the epidemiological variables X = (S, I,R)
can influence the behavioral dynamics via payoff functions fi(x,X).

In order to illustrate the model (5), we consider first a simple case, when the behavioral
payoffs are independent of the epidemiological variables and the behaviors follows the
Rock-Scissor-Paper Dynamic. This may be the case, if behaviors across the population
are following some periodical trends, but in general this may not be a realistic assumption.
Some trajectories are pictured in the Figure 3.
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Figura 3: SIRS+Replicator Model with Rock-Scissor-Paper Behavior and µB = µD = 0.016, γ =

0.3, β = 0.6, κ = 0.01, S(0) = 499, I(0) = 1, R(0) = 0, x1(0) = 0.5, x2(0) = 0.4, x3(0) = 0.1.

As we see, the trajectories depicted by the model, has some resemblance to the ones
presented in Figure 1 but there are some differences. The model replicate the initial steady
increase in the infected population but predicts an increase in the recovered population
as a consequence of the behavioral considerations. The model predicts also a continuous
oscillatory behavior.

We can consider now some different dynamics. For example, assume that instead of
static matrix A as (6), the payoff of behaviors are given by a dynamic matrix AX that
depends on the epidemiological variables X = (S, I,R) as the following:

AX =





Behavior 1 Behavior 2 Behavior 3

Behavior 1 0 S−I
N

S−R
N

Behavior 2 I−S
N

0 I−R
N

Behavior 3 R−S
N

R−I
N

0



. (6)
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The entrance of payoff matrix AX can be interpreted as the advantage obtained by
a behavior when compared with the other ones, in the epidemiological situation X =
(S, I,R). Note that the Behavior 1, associated with remaining in the susceptible group
(avoiding infection), increase its advantage if the number of susceptibles increase. In the
same way, the Behavior 2, related to leave the infected group, increase its advantage if the
infected population increase. The Behavior 3, related to remains in the recovery group,
increase its advantage if population in recovery increase. The matrix AX can therefore
be interpreted as incentives for doing what seems the right thing in the right situation, a
perfectly right dynamics in some sense. Figure 4 presents the trajectories for this model
considering the same parameters and initial conditions that in the example pictured in
Figure 3.
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Figura 4: SIRS+Replicator Model with Perfectly Right Dynamics and µB = µD = 0.016, γ =

0.3, β = 0.6, κ = 0.01, S(0) = 499, I(0) = 1, R(0) = 0, x1(0) = 0.5, x2(0) = 0.4, x3(0) = 0.1.

Figure 4 may seem surprisingly straightforward compared with Figure 3. In both
situations we are considering the same dynamics for the epidemiological variables so the
main difference is the use of the matrix AX . The trajectories depicted in Figure 4 it would
represent an utopical situation in the long-term (infection was contained and the Behavior
1, that avoid new infections, is spread across population). This of course is not a realistic
expectation in many situations. The most important insight we can obtain from this
numerical approach, is that a proper policy of dynamical incentives may improve

diseases control. But, what would happen if no one is ever following the preventive
behavior B1? Can behaviors B2 and B3 be enough for controlling the disease? The answer
may be negative, as is suggested by the results presented in Figure 5, corresponding to
the perfectly right dynamics with initial conditions x1(0) = 0.0, x2(0) = 0.5, x3(0) = 0.5
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Figura 5: SIRS+Replicator Model with Perfectly Right Dynamics and µB = µD = 0.016, γ =

0.3, β = 0.6, κ = 0.01, S(0) = 499, I(0) = 1, R(0) = 0, x1(0) = 0.0, x2(0) = 0.5, x3(0) = 0.5.

The previous questions and other issues raised in the present work, will be deeply
explored numerically and analytically in future works. The mathematical framework pro-
posed in this work can be improved and adapted to several situations. The assumption
that all behaviors were well-intended to reduce the disease impact, may be substituted for
a more realistic situation, where some of the behaviors may actually increase the risk of
infection or decrease the rate of recovery. Also, non-matrix payoff should be considered
to obtain most realistic models.
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