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Abstract. This work presents a mathematical model for production planning problem in
the glass containers industry. The manufacturing process in this type of industrial plant
has two phases. In the first phase, the glass melting in a furnace is performed and in the
second stage the production of containers occurs in molding machines. The appropriate
configurations for each machine connected in a furnace is a decision to be taken, which
depends on the demand forecast for glass container within a time horizon. The model
proposed will describe objectives and constraints that allow defining the best configuration
for the whole plant. A heuristic combining Fix-and-Optimize and Relax-and-Fix approaches
is also applied over the same instances. The results indicate that the proposed model as
well as the heuristics are able to provide good quality solutions for this problem.
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1 Introduction

The problem studied on this paper deals with how to determine a better configuration
for an industrial plant that produces glass containers. The lot-sizing decisions must satisfy
constraints related with machines and furnace capacities. Currently, production planning
can reflect the possible specificity of industrial processes and allow greater flexibility for
production operations [10].

The main contribution of this work is to propose a mathematical formulation, based on
mixed integer programming model, capable of describing the production situation studied
on this paper. A set of instances is generated from data provided by a glass container
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industry located in Portugal. The heuristics is based on mathematical programming and
combines the Relax-and-Fix (R&F) along with Fix-and-Optimize (F&O) approaches.

2 Related Work

The glass container problem considered in this paper includes lot-sizing decisions.
There are several reviews in the literature about lot sizing and production planning as [6]
and [12]. A review about models for lot sizing problems is presented in [10], while another
review considering meta-heuristics applied to lot sizing problems can be found at [11]. In
the context of lot-sizing problem in the glass container industry, the authors in [1] treat a
system with multiple production facilities where a mathematical model is presented. In [2]
and [15], it is described a mathematical formulation and meta-heuristic methods for the
short-term production planning in a single-facility with only one furnace.

The present paper applies a heuristics based on mathematical programming that com-
bines the construction heuristics relax-and-fix (R&F) with the improvement heuristics
fix-and-optimize (F&O) . A review on mathematical programming based heuristics is pre-
sented in [4]. The construction method R&F solves mixed-integer programming (MIP)
sub models, optimizing some integer variables and keeping others relaxed [17]. The au-
thors in [3] applies R&F heuristics to solve a lot sizing problem in the foundry industry.
A similar approach is applied by [16] and [5] for a lot sizing problem in the animal feed
industry. In [7] and [8], R&F is also used to solve a production problem in the beverage
industry. The improvement F&O heuristics starts from an initial solution, wheres some
of its variables are re-optimized while others are fixed [17]. In [14], F&O was combined
with an genetic algorithm to solve also a multi-stage lot sizing problem.

3 Mathematical model

This section presents the mathematical model, where it is assumed only one furnace
that can be connected to several machines with different configurations. The parameters
and decision variables are shown next.

Parameters:

• m: Machines available (m = 1, ...,M).

• i: Products to be manufactured (i = 1, ..., I).

• a: Annual Time horizon (a = 1, ..., A).

• NSm: Number of sections by machine m.

• TGm: Type of gob by machine m.

• ACim: 1 if product i is accepted in the machine m.

• Cm: Cost to install machine m. ($)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0298 010298-2 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0298


3

• Dia: Demand expected of product i in period a. (ton)

• Wi: Weight of product i. (ton)

• Ri: Efficiency of the cavity for product i. (bottles/min)

• M : Maximum machines supported by the new furnace.

• CF : Cost to install fuse capacity on furnace. ($/ton)

• ηm: Efficiency of machine m. (%)

Variables:

• KF : Melting capacity required for the furnace. (ton)

• Qima: Lot size of product i on machine m in the period a. (ton)

• Fima: Time spent on period a in which machine m was dedicated to produce product
i. (years)

• Y m: 1 if the machine m is installed, 0 otherwise.

Formulation:

Min f(KF, Y 1, ..., YM ) = CF ∗KF +

M∑
m=1

Cm.Y m (1)

Subject to:
M∑
m=1

Y m ≤M (2)

Fima ≤ Y m ∀(i,m, a) (3)

Fima ≤ ACim ∀(i,m, a) (4)∑
i

Fima = Y m ∀(m,a) (5)

Qima = Fima.(Ri.Wi.NSm.TGm.ηm) ∀(i,m, a) (6)
a∑
τ=1

∑
m

Qimτ ≥
a∑
τ=1

Diτ ∀(i, a) (7)∑
i

∑
m

Qima ≤ KF ∀(i, a) (8)

KF,Qima, Fima ≥ 0 (9)

Y m ∈ {0, 1} (10)

The objective function (1) minimizes costs related to increase the melting capacity
of the furnace along with the cost of machines. Constraints (2) represent the limit of
machines that can be installed in the furnace. Constraints (3) allow the production of
product i only if machine m is installed, while constraints (4) allow the production only if
the product i is accepted by machine m. The setup time between products for each period
a and machine m is described by constraints (5). The lot-size of product i in machine m in
period a is defined in constraints (6), while constraints (7) ensure the demand satisfaction.
Constraints (8) define that the furnace and machine capacities must meet the demand.
The variable domains are given by constraints (9) and (10).
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4 Methods

Algorithm 1 describes the R&F developed, where a partition (m̂) defines the set of
binary variable to be optimized while the others remain relaxed. At the end of each
iteration, the binary variables have their values fixed and another partition is defined.

Algorithm 1: Relax–and–Fix
begin1

Solve model with all Ym variables relaxed;2
m̂← 03
for m̂ ≤ M do4

Variables Ym become binary ;5
Solve model;6
if there is solution found then7

Fix Ym values;8
m̂← m̂ + 19

end10
else11

Infeasible12
end13

end14
end15

Algorithm 2 describes the F&O, where the final solution of R&F is used as initial
solution. Of course, if R&F did not find a feasible solution, F&O will be also infeasible
once it is a improvement heuristic and needs an initial solution. A partition (m̂) defines
the set of binary variable to be optimized while the others remain relaxed. At the end of
each iteration, the binary variables have their values fixed and another partition is defined.

Algorithm 2: Fix–and–Optimize
Final R&F solution1
currentSolV alue← rfSolV alue2
begin3

m̂← 04
for m̂ ≤ M do5

Set free to optimize the binary variables Ym6
Keep fixed the values of other binary variables7
Solve model8
if solV alue ≤ currentSolV alue then9

currentSolV alue← solV alue10
Fix Ym values;11

end12
else13

Fix previous non-optimized Ym values14
end15
m̂← m̂ + 116

end17
end18

5 Computational Results

The instances to be evaluated were created by a random generator from data provided
by a glass container industry located in Portugal. Two groups of instances were elaborated:
Factory-Machine (FM) and Horizon-Time (HT). A total of five subgroups of instances were
created for each case, where each subgroup contains 10 instances.

The mixed integer model proposed was coded in C/C++ using the interface OPL of
package IBM ILOG CPLEX 12.6. The interface OPL and solver CPLEX were also used
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to develop the heuristics R&F with F&O. The exact solution from model formulation and
the solutions returned by R&F with F&O were tested in a total of 100 instances, where
50 instances come from FM and 50 from HT. The time limit was one hour to run each
method. All tests were performed on a computer with an Intel(R) Core(TM) i7, 2,67 GHz
e 18 GB RAM, and operating system Linux (version 3.2.0-4-amd64 / Debian 4.6.3-14).
The resolution of instances from the proposed model, using the solver CPLEX, allowed
reaching optimal solutions for some instances as can be observed in Figure 1.
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Figure 1: Number of optimal solutions using the proposed model.

In Figure 1, it is observed that solver CPLEX finds 10 optimal solutions in the scenario
with 100 machines (FM01). In other scenarios, it was possible to find at maximum 6
optimal solutions. In the HT group, a total of 6 and 4 optimal solutions are obtained for
the two simpler scenarios (HT04 and HT06), while we have two or one optimal solution
returned within one hour for the other cases. The number of variables and constraints
increases for both cases when parameters M and T are increasing. This directly impacts
over the exact method performance.

Gap(%) = 100 ∗
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Figure 2: Average results obtained through GAP.

Figure 2 compares the average results obtained through the GAP defined in equation
(11). This value is obtained from the difference between the Upper Bound (UB) and
Lower Bound (LB), divided by the Upper Bound (LB). For instances of the FM group,
the methods were the same for FM01 subgroup, while the R&F with F&O heuristics
obtained better solutions on average than solver CPLEX for the other subgroups. In the
HT instances, the proposed heuristic got better solutions for all subgroups.

Figure 3 presents the number of better solutions returned by some of the methods
and the amount of draws. A draw occurs when |solMethod1 − solMethod2| < 0.01.
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Figure 3: Number of victory and equal between methods.

R&F with F&O heuristics wins more than CPLEX for FM group, but several draws also
happend. For HT group, there is less number of draws and the propsed heuristic confirms
its superiority in terms of number of wins.

6 Conclusion

This work introduced a mathematical model where decisions about how to define a
plant configuration can be done along with lot size decisions. The mathematical model
was able to solve optimally only subgroup FM01. The proposed heuristics is promising
once its average GAPs are better for 9 out of 10 sub-groups. There are several draws
among the final solutions returned by using the mathematical formulation introduced and
the proposed heuristics. However, R&F with F&O heuristics returned the best solutions
when there are no draws.
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