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Abstract. Clustering Search (CS) is a hybrid optimization method which assists the discov-
ery of promising search areas by dividing the search space. The search process is guided by a
grouping mechanism that indicates where to perform local search. This paper proposes the
use of estimation distribution to assist both the clustering and local search processes in or-
der to reduce the computational effort to optimize combinatorial problems. Computational
experiments and theoretical analyzes are used to validate the proposal.
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1 Introduction

Clustering Search (CS) has been proposed as a generic way of combining metaheuristics
and local search in which the search is intensified only in areas of the search space that
deserve special attention [4,11]. The main idea is to identify promising areas of the search
space by generating solutions through a metaheuristic and clustering them into groups that
are further explored with local search heuristics. Center of clusters can be as a reference
point or simple model to obtain the best solution on the search space framed by it.

Despite the greater number of CS applications, employing different metaheuristics to
generate candidate solutions [3, 5, 7, 12], the local search algorithms are still computa-
tionally expensive problem-specific procedures. By the other hand, approaches based on
Estimation Distribution Algorithms (EDA) [2, 8, 13, 16] claim to be able to find good so-
lutions with less objective function calls [13]. In EDA, the evolutionary operators are
replaced by probabilistic models that represent the set of promising solutions.

This work proposes the use of estimation distribution to assist the local search process,
providing a general purpose, adaptive way of exploiting promising areas, also reducing the
computational time for it. Clusters of candidate solution are represented now by proba-
bilistic models, capable to generate other solutions inside the search subspace, meaning as
a kind of non-problem-specific local search procedure. One can see the whole metaheuris-
tic as multiples local estimation of distribution algorithms, exploring distinct promising
search areas.
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2 Previous approaches

Evolutionary Clustering Search (ECS) is a hybrid evolutionary algorithm that employs
clustering to better explore search space. The ECS attempts to locate promising search
areas by framing them by clusters that are represented by a center, c. The number of
clusters NC can be fixed a priori [4] or dynamically determined according to the width of
the search areas (size of the problem at hand) [12]. The cluster coverage is determined by
a distance metric that computes the similarity between a given solution and the cluster
center. Hamming and Euclidean distance metrics are popular ones [12].

ECS can be better understood, observing the four conceptually independent parts.
Evolutionary Algorithm component (EA) works as a continuous generator of candidate
solutions, evolving a population independently of the remaining components. Individuals
(candidate solutions) are selected, recombined, and updated for future generations. Iter-
ative Clustering component (IC) uses a distance metric to create and maintain clusters,
based on the similarity of individuals generated by EA component. Each activated cluster
receives proportionally votes. Non-activated clusters can be removed and the respective
search area is forgotten. Clustering Analyzer component (CA) checks each the votes re-
ceived by each cluster at regular generation intervals, indicating which are promising based
on their density (number of votes received by the cluster). CA is also responsible for the
removal of low density clusters. Finally, the Local Search component (LS) provides an
exploitation mechanism in alleged promising areas, framed by the more voted clusters.

Estimation Distribution Algorithms replace evolutionary operators by building and
sampling probabilistic models. The types of EDA can also be defined based on the need for
explicit conservation of the population in each iteration, making the population preserved
or eliminated completely during iterations of the algorithm [14]. A major advantage
of using incremental EDA is the complexity of memory is significantly reduced, since the
population is not completely stored, i.e, only representative individuals are maintained [1].

3 Estimation Distribution Clustering Search - EDCS

Consider an individual X consisting of x1, x2, ..., xi discrete values. EDCS maintains a
population P (t) = {X1(t), ..., XN (t)} and a set of clusters C = {c1, c2, ..., cK}, where N is
the number of individuals in Population at time t, and K is the number of clusters. Each
cluster maintains a probability matrix given by:

Ωk(t) =


p11k(t) p12k(t) ... p1jk(t)
p21k(t) p22k(t) ... p2jk(t)
... ... ...

pi1k(t) pi2k(t) ... pijk(t)

 , (1)

where Ωk(t) models the distribution of probability in search space of cluster k and pijk(t)
denotes the probability that xi is assigned to position j in cluster k; the sum of the
probabilities, shown in Equation 2, between discrete values for a position j must be equal
to 1.
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n∑
i=1

pijk = 1 (2)

The cluster status can be PROMISING or EXHAUSTED. The PROMISING state
says the cluster is able to performing up to θ times the problem-specific local search.
EXHAUSTED is set when the algorithm decides it is no longer possible to find a better
solution. The value of θ indicates the amount of times that is held local search in each
cluster configuration.

3.1 Initialization

Initialization is divided into two parts: population and clusters. To initialize the
population, the algorithm generates randomly N solutions (individuals). In the second
part, each cluster is initialized with a uniform probability distribution whose value is
1/n. Furthermore, each cluster should store the best individual, represented by Bk(t) =
{b1(t), b2(t), b3(t), ..., bK(t)}, found in that search area based on the local search engines
applied. The status of the cluster to perform the local search is set, always beginning with
status PROMISING.

3.2 Update of Probability Matrix

Each individual presented to the Iterative Clustering is assimilated by the more similar
cluster and the probability matrix is updated.

Each individual of the population is grouped in a cluster based on a rank of similarity.
This rank is calculated using a distribution probability with independent variables shown
in Equation 3. This probability specifies the chance of a solution belong to a cluster k.

p(X|ck) = p(x1, ..., xn|ck) =

n∏
j=1

pijk (3)

The individual is assimilated to the cluster which has the highest rank (more similar).
The probability of X belonging to a cluster ck is represented by p(X|ck).

When the individual is assimilated to a cluster, the probability matrix is updated based
on the following rule:{

pijk(t+ 1) = pijk(t)× Dk(t)
Dk(t)+1 + 1

Dk(t)+1 , ∀ xi = j

pijk(t+ 1) = pijk(t)× Dk(t)
Dk(t)+1 , ∀ xi 6= j

(4)

The value Dk(t) is the density of cluster k in time t, in other words, the amount of
assimilated individuals.

This rule of Equation 4 is based on Population-Based Incremental Learning (PBIL) [1]:

p(t+ 1) = p(t)× (1− γ) + γ × σ. (5)
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for γ ∈ (0, 1]. The value γ is the learning rate.The bigger γ is,the more contribution of
strings parents to the updated probability vector. The value σ is related to the sum of
occurrences of the value guided by p(t).

Unlike the PBIL, Equation 4 also updates the probabilities where xi 6= j, for the pur-
pose of maintaining the condition in Equation 2. This condition is necessary to calculate
rank in Equation 3.

3.3 Guided Mutation to generate of new individuals

Guided Mutation [16] is used to mutate an existing individual to provide a new indi-
vidual on the basis of a set of probabilities pk. The factor 0 < α < 1 controls the amount
of change that the individual receives.

Randomly two groups are formed . The first group has αN values. The second has
(1−α)N values. The values of the first group are assigned directly to the new individual,
while the second group elements are rearranged based on probability matrix of each cluster.

The guided mutation is performed in two different situations. The first happens when
a cluster is to status EXHAUSTED, and the other is on the remaining individuals of the
population. This strategy allows to search other solutions in different regions not yet
explored in the search space. If the cluster is EXHAUSTED Guided Mutation can bring
it from the local minimum and allow it to turn on again.

4 Computational Experiments

To validate the proposal, a recently explored NP-Hard permutation problem was cho-
sen: Minimization of Open Stacks Problem (MOSP). MOSP is strongly linked with other
industrial problems [9]. Evolutionary Clustering Search is applied to Gate Matrix Layout
Problem (GMLP), besides MOSP and the best results found in literature were reached.
An application of EDCS to MOSP/GMLP allows a straight comparison with the best
approach found in literature [11].

A Minimization Open Stack Problem (MOSP) occurs in certain situations in indus-
trial production, where items with different specifications (shapes, sizes, etc.) need to be
produced and temporarily kept in yards during production. The items are cut and placed
in stacks according to their size (a stack for each type of item). Each stack is open as long
as there are elements to be cut of the same item. Its goal is to arrange a set of items such
that the number of open stack at same time is minimized [9].

GMLP is quite similar to MOSP, but it is related to other conceptual elements, se-
mantically different. Its goal is to arrange a set of gates such that the number of tracks
necessary to cover the gates interconnection (nets) is minimized [9].

One must determine the sequence of cutting patterns that minimizes the maximum
of stacks open during the cutting process. Typically, this is a problem that occurs due
the limitations of physical space, since the accumulation of stacks may cause the need
temporarily removing one or the other stack, slowing the production process.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0335 010335-4 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0335


5

Figure 1: Boxplot Results for objective function calls

4.1 Description of Experiments

In this section, early Evolutionary Clustering Search (ECS) and newly proposed Es-
timation Distribution Clustering Search (EDCS) are both applied to MOSP/GMLP in-
stances found in the literature and their performance are compared. ECS represent clusters
by a candidate solution coded by a permutation of integer, and performing local search
by a 2-Opt hill-climbing strategy. The ECS results are up to now the best found in
literature [11] .

The hardest MOSP/GMLP problem instances reported in literature [10] are: w1(21),
w2(33), w3(70) and w4(140), x0(48), x1(10), x6(32), x9(32). The number of gate/pattern,
i.e., instance size appears in round brackets. The ECS parameters were set similarly
to [11], while EDCS had the following set: N = 720, K = 30, α = 0.8, θ = 10.

4.2 Results

The results were obtained allowing all approaches to perform up to 5 × 106 objective
function calls (FC) in each one of 30 trials. The success rate (SR) was calculated, as well
as the objective function calls average FC.

By ANOVA [15] analysis in Table 1, one can verify that there is significant statistic
difference on instances with large numbers of variables (w3 and w4) [6]. In Figure 1, the
statistic difference is highlighted.

In Table 1, SR and FC are presented and the best ones are highlighted for each problem
instance. One can observe that EDCS’s SR is better for the two largest instances: w3 and
w4; for which FC, evidently, is the best too. For the other instances, when both has the
same SR, the ECS’s computational effort to reach the best solution (FC) is lesser for w2
and x6 instances.
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Table 1: One-way ANOVA with SR and FC by ECS and EDCS

Instance Lenght F statistic p-value
SR(%)
ECS

FC
ECS

SR(%)
EDCS

FC
EDCS

W1 21 1.2868 0.2613 100 17872.433 100 13804.533

W2 33 3.9513 0.0516 100 35996.4 100 53200

W3 70 50.9758 1.7072e-09 40 3651220.3 86.667 960320.77

W4 141 18.9383 5.5474e-05 3.333 4831960.1 60 3310243.9

X0 48 0.9609 0.3310 100 135056,267 100 110957.2

X1 10 0 1 100 720 100 720

X6 32 3.1211 0.0825 100 17639.267 100 25598.3

X9 32 13.1676 0.0006 100 38625.833 100 18172.033

5 Conclusion

Clustering Search (CS) is a framework for combining exploration and exploitation op-
timization methods and incorporates explicitly the concept of promising regions of search
space. Despite the meaningful number of existing CS applications, the CS main features
as cluster representation, assimilation and local search procedures are all problem-specific
proposals. This work goes in the direction of replacing some of these problem-specific ele-
ments for general general purpose and adaptive way of exploiting promising areas. For this
reason, a Clustering-Search based on Estimation Distribution Algorithm is proposed and
applied to a permutation problem found in literature. Computational experiments vali-
date the initial assumption that new approach is competitive for dealing with permutation
problems.

In future works, new refinements are needed to consolidate the proposal. For example,
new applications for unconstrained continuous optimization as well as other combinatorial
optimization problem. Local search procedure must be reformulated to avoid definitely
problem-specific heuristics.
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