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Abstract. From the point of view of the potential clinical use of computational hemody-
namic, it is mandatory to get the computational time of simulation each time closer to real
clinical needs. Spending hours and even days to solve accurately one single cardiac cycle of
the whole cardiovascular system is unfeasible on daily practice. In this sense, in this work we
study the transversally enriched pipe element method (TEPEM) as an effective alternative
to solve the Navier-Stokes equations in bifurcated domains with enough accuracy to provide
clinically relevant information but at a significantly reduced time.
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1 Introduction

The role of computational hemodynamics is fundamental to aid in the prognosis and di-
agnosis of cardiovascular diseases due the well-known correlation between the localization
of these pathologies and hemodynamic quantities such as blood flow velocity, pressure,
boundary layer separation and wall shear stress [4, 6, 7, 11]. Among many types of ap-
proaches available in the field of computational hemodynamics and considering the poten-
tial clinical use of these models, the trade-off between quality of results and computational
burden is a key aspect. While fully 3D simulations are invaluable to our understanding
of hemodynamics quantities and patterns, as recirculation within regions as aneurysms
or stenoses, the high computational requirements of time and supercomputing clusters
make this a difficult approach for common use in daily medical practice. Grinberg et
al. report in [8] that simulating one cardiac cycle in an arterial tree that included the
largest arteries required 27.7 hours of computational time using 40,000 processors. On
the search of computationally cheaper approaches, dimensionally reduced models (e.g. 1D
models) appear to be capable to provide useful information about the global dynamics
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of the system with an excellent compromise between predictive capabilities and compu-
tational cost [1, 3, 5, 9, 12]. However, these reduced models are unable to predict some
important features of cardiovascular function, such as local flow patterns and transversal
dynamics. Considering this need for 3D-like results and looking for reduced computa-
tional effort (time and computational resources), it was proposed in [2, 10] the so-called
transversally enriched pipe element method (TEPEM) as an effective numerical approach,
capable to provide flow-related quantities with the sufficient accuracy to viabilize clinical
use and with a severe reduction of the computational cost when compared with classical
3D simulation technologies. In this work, as a follow up study, we explore the advantages
of the TEPEM for the simulation of blood flow through bifurcated domains in terms of
time/resources reduction when compared with classical FEM approach.

2 Model problem

Let Ω ∈ R3 with boundary Γ = Γi ∪ Γo ∪ ΓL, being Γi and Γo the inlet and outlet
boundaries, respectively. Lateral wall is smooth and is denoted by ΓL. Figure 1 presents
a diagram of the domain of analysis for the fluid flow problem.

Figure 1: Schematic setting for the model problem

At Γi and Γo Neumann or Dirichlet boundary conditions can be imposed. Since we are
modeling blood flow in an isolated geometry from the rest of the cardiovascular system, we
assume the velocity field is fully developed at Γi and Γo, and thus homogeneous Dirichlet
boundary conditions are considered for the in-plane velocity components. Additionally,
Neumann boundary conditions are assumed for the normal component of the traction
vector at those boundaries. Over ΓL homogeneous Dirichlet boundary conditions are
prescribed.

The variational formulation for the fluid flow problem reads: find (u, p) ∈ V × L2(Ω)
such that∫

Ω

[
ρ
∂u

∂t
· û + ρ(∇u)u · û + 2µε(u) · ε(û)− pdiv û− p̂ div u

]
dΩ =∫

Γi

tin · û dΓi +

∫
Γo

ton · û dΓo ∀(û, p̂) ∈ V × L2(Ω), (1)

with ρ and µ being the fluid density and viscosity, respectively, ε(·) = (∇(·))S , n is the

outward normal unit vector and (̂·) denotes an admissible variation of field (·). Space V is

V = {u ∈ H1(Ω); u|ΓL
= 0, (Πu)|Γi = 0, (Πu)|Γo = 0}, (2)
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where H1(Ω) = [H1(Ω)]3, and where Π = I − n ⊗ n is the projection operator over the
surface whose normal unit vector is n. Finally, ti and to are given data which stand for
the magnitude of the normal component of the traction vector imposed at Γi and Γo,
respectively.

3 The TEPEM methodology

The TEPEM approach is based on the split of the axial and the transversal components
of the primal fields on the Navier-Stokes equation: velocity and pressure. The motivation
behind this strategy is the a priori knowledge on the blood flow dynamic, which features a
dominant direction when circulating through the arterial system. To do this, we perform
a very special partitioning strategy associated to an also unusual interpolant choice for
the fields. These two steps are explained next.

3.1 Geometric approximation

As can be seen in [2, 10], the TEPEM associated partitioning is based on slab-type
elements oriented following the axial direction of the domain. Then dealing with bifurcated
domains, we must extend the partitioning strategy due the absence of one only dominant
direction in the bifurcation region. In Figure 2 we show a first approach of slab-type
partition of a bifurcated domain in which is easy to identify two types of elements: the
simple element axially demarcated by two transversal sections and the special element
axially demarcated by three transversal sections (colored in red).

Figure 2: Geometrical partition of bifurcated domain based on slab-type elements.

Each element K is related to a reference element K0, here K0 = [−1, 1]3, on the
ξηζ−space. Let us consider {Si(ξ, η) : i = 1, · · · , 12} the cubic Serendipity family defined
on the square [−1, 1]2 of the ξη−plane (see [10,13]). The geometrical mapping between a
slab-type element (simple or special) is based on a combination of Serendipity bases for
each transversal section coupled with a quadratic approach for the axial direction.

A simple element K is composed by three transversal sections, two axial (flat) bound-
aries and one inner slice. Denoting by Si(i = 1, 2, 3) the mapping between [−1, 1]2 and
each transversal section (via Serendipity basis), the map between the reference element
and K is expressed as:

χK(ξ, η, ζ) = S1(ξ, η)Q1(ζ) + S2(ξ, η)Q2(ζ) + S3(ξ, η)Q3(ζ) (3)
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On the other hand, a special element K is composed by four transversal sections, three
axial (flat) boundaries and one inner slice. In a similar way to simple elements, denoting
by Si(i = 1, 2, 3, 4) the mapping between [−1, 1]2 and each transversal section, the map
between the reference element and K is expressed as:

χK(ξ, η, ζ) = S1(ξ, η)Q1(ζ) + S2(ξ, η)Q2(ζ) + (S3(ξ, 2η− 1)Iη≥0 + S4(ξ, 2η+ 1)Iη<0)Q3(ζ)
(4)

With this interpolation basis and based only on the cross-section information, the
geometrical mapping provides an accurate description of the real geometry, as can be
seen in Figure 3. Notice that the geometrical approach, in the way explained here, is
independent of the interpolant choice for the physical fields.

Figure 3: Comparison between three surface targets and the proposed geometry approach.

3.2 Physical fields approximation

Each field (in the reference element K0), is interpolated using a combination of low
order polynomials in the axial direction and high order polynomials for the transversal (in-
plane) direction. The order of the transversal interpolants will define the model capacity
to deal with the transversal dynamics, the higher the order of the polynomial order for
the transversal approach, the better the TEPEM solution. Denoting by p (p even) the
transversal order, on the reference element K0 we approximate the velocity and pressure
as:

uh(ξ, η, ζ) =

3∑
i=1

(p+1)2∑
j=1

uijφj(ξ, η)Qi(ζ) ph(ξ, η, ζ) =

2∑
i=1

(p/2+1)2∑
j=1

pijϕj(ξ, η)Li(ζ) (5)

where {φj}, {ϕj}, {Qi} and {Li} are basis functions of the spaces Pp × Pp, Pp/2 × Pp/2,
P2 and P1, respectively, with Pr the space of all the polynomials defined on [−1, 1] with
degree up to r. The reason behind this particular choice of spaces is to deal with the inf-sup
condition. Even when the degrees of freedom per element is higher when compared against
classical finite elements, the total number of unknowns in the system is considerable small
due to the small quantity of slab-type elements.

4 Numerical results

To demonstrate the capacity of TEPEM, we simulate the flow through an idealized
bifurcation. The boundary condition at the inlet is given by a prescribed flow such that
the Reynolds number is Re = 250. At the outlet, homogeneous Neumann boundary
condition is imposed. Fluid density and viscosity are set to ρ = 1.04 g/cm3 and µ =
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0.04P, respectively. Due to the size of the problem, a distributed computing paradigm
is employed for both, TEPEM and FEM approaches. Table 1 shows the results in terms
of computational effort and accuracy for both methodologies and different mesh sizes for
FEM and transversal order for the TEPEM. To measure the accuracy, we employed as
reference solution a FEM approximation obtained with a very fine mesh composed by
4 903 064 degrees of freedom and 5 631 877 tetrahedral elements.

Table 1: Comparison of computational effort and acuracy for the TEPEM and FEM. All
the cases for TEPEM and FEM are simulated using the same number of computational
nodes.

Computational effort Error

Method Elements DoFs Time (min) ‖v − vh‖2 ‖p− ph‖2

TEPEM

p = 4 220 34 360 0.3 0.074243 116.27901
p = 6 220 68 266 2.4 0.029104 44.813802
p = 8 220 113 718 10.5 0.005007 25.730026
p = 10 220 170 716 36.1 0.003179 12.055404
p = 12 220 239 260 114.2 0.002485 6.2524727

FEM

h = 0.012 198 348 137 844 3.5 0.104832 112.57084
h = 0.01 344 690 235 480 9.8 0.046576 60.573951
h = 0.008 676 435 454 336 36.2 0.016205 26.188051
h = 0.006 1 626 317 1 072 612 148.4 0.003197 9.8464527

The results in Table 1 illustrate the effectiveness of presented methodology on the
reduction of computational effort and, at the same time, in the accuracy of results. The
TEPEM, even with low transversal order such as p = 6 or p = 8, provides very reliable
results capable to be employed for the computation of quantities of clinical interest, such
as wall shear stress or fractional flow reserve, in a reasonable time. Figures 4 and 5,
present a comparison between velocity field and pressure approximation using different
approximation order of the TEPEM (p ∈ {6, 8, 10}) against the refernce solution obtained
using FEM. The velocity and pressure profiles provided by the TEPEM are very close
to the reference solution using the FEM and, as expected, the higher the order of the
polynomial order for the transversal approach, the better the TEPEM solution.

5 Final remarks

The strategy presented here is both simple and effective to provide sufficiently accurate
with an important reduction in the computational effort. This method has now been
extended to bifurcated domains. Hence, the TEPEM is seems promising targeting real
applications in arterial patient-specific domains, because of its capacity to approximate
flow-related quantities with precision compatible with medical demands.
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Figure 4: Comparison between the velocity magnitude of reference FEM solution and
TEPEM approximations with different transversal enrichment.

Figure 5: Comparison between the pressure profile of the reference FEM solution and
TEPEM approximations with different transversal enrichment.
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