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2Instituto do Cérebro, Hospital Israelita Albert Einstein,

Av. Albert Einstein, 627, São Paulo, Brazil, 05652900†

Abstract: In this work we introduce some nonlinear neural dynamics techniques and analyze the
performance of two variability measures related to the system uncertainty and predictability in the
context of rats sleep study. We propose the bases of a novel automatic sleep staging procedure
that is independent of the spectral analysis and can be extended to human sleep EEG data with
no need of simultaneous recordings as fMRI, EOG, EMG or polysomnograms.
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I. INTRODUCTION

From 1985 to 1990, considering the existence of an un-
derlying attractor set that generates the neural activ-
ity, several researches started to apply dynamical sys-
tems analysis to neural data through the phase space
reconstruction process defined by Takens and Whitney
[1]. Classical invariants as Lyapunov exponents, fractals
dimensions and entropies were estimated from Electroen-
cephalographs (EEG) and local field potentials (LFP),
propagating the idea that “brain and chaos” were a per-
fect match. After 1990 the concept of a “chaotic brain”
were reexamined with validation tests. Some authors
criticized and rejected previous results and, nowadays,
the nonlinear dynamical systems analysis is used not to
characterize chaos in neural signals but rather to develop
novel variability measures capable of identifying phase
space transitions expected in well-defined experiments
which results can be validated with hypothesis tests and
the noise effect can be discarded [2].

The electrophysiological sleep study in mammals
started in 1937 with the characterization of different sleep
stages associated to specific brain activity [3].

Sleep can be divided in two categories: nonrapid eye
movement (NREM) and rapid eye movement (REM)
sleeps. Based on neural responses, NREM has 3 stages.
In this work we denote the first two as simply NREM and
stage 3 as NREM - slow wave sleep (SWS). SWS is de-
fined by oscillations with high amplitude and frequency
less than 4 Hz (delta wave) [4].

NREM and REM occur in alternating cycles and,
among several analysis of their importance, there is the
evidence that sleep promotes a fundamental role in me-
mories long-term consolidation associated to neocortex
and hippocampus areas, where declarative memory is re-
lated to NREM-SWS and procedural memory is related
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to REM sleep [5].
Considering this context, in this work we analyzed the

variability of a LFP signal from the CA1 region of Am-
mon’s horn (central structure of the hippocampus) of
rats, during NREM, NREM-SWS and REM sleeps and
introduce two promising techniques for automatic sleep
staging independent of spectral analysis and with high
accuracy (compared with visual inspection results).

In section II we present some information of the em-
pirical data used. In section III we introduce the phase
space reconstruction and define two variability measures
related to the signal uncertainty and regularity. We show
their results to a noise and transient simulated signal and,
in section IV we point out the variability analysis to the
empirical signals. In section V we discuss the findings
and its applicability.

II. MATERIALS

Rats, electrodes and surgery description as well as be-
havioral and eletrofisiologic reports for sleep-wake cycle
visual inspection can be found in [6] (PhD thesis in por-
tuguese). The signals sample rate is 500 Hz and they
were recorded during 2 hours (3, 600, 000 time points).

III. METHODS

A. Phase Space Reconstruction

The first step to apply dynamical systems tools in
neural data is to consider the signal as a projection of
a multi-dimensional underlying attractor and retrieve
its geometrical and analytical proprieties by a recon-
struction procedure, based on Takens-Whitney delay em-
bedding theorem [1]. Given the scalar signal: X =
{x1, ..., xn}, we reconstruct its corresponding phase space
{−→xi = (xi, xi+τ,, ..., xi+(m−1)τ ); i = 1, ..., n − (m − 1)τ},
where m is the embedding dimension and τ is the time
delay related, respectively, to the attractor geometry
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and time scale. Usually, the optimal values m and
τ are estimated from independent procedures although
their correlation is not negligible. We have employed
the Gautama-Mandic-Hulle method [7, 8] that deter-
mines those two parameters jointly. For instance, in
figure 1 we present: (a) a solution for the Lorenz sys-
tem (ẋ = σ(y − x), ẏ = x(ρ − z) − y, ż = xy − βz ; with
σ = 10, ρ = 28 and β = 8/3) as the underlying dynam-
ics ; (b) its additive noise projection and (c) the recons-
tructed attractor. Notice that the reconstructed phase
space preserves the shape (geometrical and topological
features) of the original system.

FIG. 1: Lorenz system reconstruction. (a) 3d signal inte-
grated with step 0.01 and 5, 000 points; (b) 1d projection
with additive noise; (c) reconstructed attractor with parame-
ters m = 3 and τ = 5.

B. Sample Entropy

The first variability measure used is the Sample En-
tropy (SE) [9], which is related to the system uncer-
tainty. For each vector −→xi defined before, given an
embedding dimension m, we define its ε-recurrence set
Ri = {−→xi : ‖−→xi −

−→xj‖ < ε}, where ε is the recurrence to-
lerance. The probability distribution in the reconstruc-
ted phase space is Pi = #(Ri)/ (n + (m − 1)τ), where
# is the set cardinality. Its mean recurrence probability
is Pm = 〈Pi〉 and, considering this quantity for embe-
dding dimension m + 1, we define the Sample Entropy
as SE(m, τ, ε) = − ln

(

Pm+1/Pm

)

, which is related to
the loss of information for successive dimensions of the
reconstructed phase space.

C. Cross Prediction Error

The second variability measure used is the Cross
Prediction Error (CPE) [10], which is related to the
system predictability. We split the scalar signal X
into n/l successive disjoint l-length windows Wi =
{x(i−1)l+1, ..., xil}. For each pair Wi (input space) and
Wj (output space) ; i, j = 1, . . . , n/l we reconstruct
the phase spaces −→xk = (xk−m+1, ..., xk) from Wi and

−→yk = (yk−m+1, ..., yk) from Wj , with embedding di-
mension m and time lag τ = 1. To estimate yk+1

in the output space using Wi, we define the estimator

ŷx
k+1 =

1

#Sx
ε (−→yk)

∑

−→xp∈Sx
ε

xp+1, where Sx
ε (−→yk) is the ensem-

ble of vectors formed from the input space that lie in the
ε-neighbourhood of −→yk, that is, Sx

ε = {−→xp : ‖−→xp−
−→yk‖ < ε}.

In the case where −→yk has no neighbors in the input space,
that is, #Sx

ε (−→yk) = 0 , we set ŷx
k+1 = 〈x〉.

The CPE matrix is defined as:

γi,j = γ(Wi,Wj) =

√

√

√

√

1

l − m

l−1
∑

k=m

(ŷx
k+1 − yk+1)2.

γ(i, j) is a measure of how much the locally recons-
tructed dynamics from one subset is accurate to predicts
another subset. Generally, γ(i, j) 6= γ(j, i). Therefore
pattern changes in the two dimensional CPE matrix in-
dicate changes in the dynamics as phase space transitions
[11].

In figure 2 one can observe a simulated noise signal
with 3 phase space transitions not detected by time fre-
quency analysis (fast Fourier transform) due to short
time series limitations. In other hand, Sample Entropy
(red curve) and the CPE matrix were sensible to those
transitions.

In this work we extracted from the CPE matrix, for
each interval i = 2, . . . , (n/l) − 1, the mean CPE value
1
3 [γi,i−1 + γi,i + γi,i+1], which takes in account the tran-
sition from neighbor windows and the auto prediction
error. We define this measure as Local Predictability Er-
ror (LPE).

IV. RESULTS

We used 2 hours 500 Hz LFP signals from the CA1
region of Ammon’s horn (central structure of the hip-
pocampus) of 3 rats [6].

Using the Gautama-Mandic-Hulle method [7] we ob-
tained m = 2 and τ = 1 and we set ε = 0.25 based on
the results found in [11].

We split the signals into 250 windows of size l = 14400
time points. Then we evaluated the two variability mea-
sures, Sample Entropy and Local Predictability Error
and normalized its values to the interval [0, 1].

From the visual sleep staging for one random chosen
rat, we determine correspondents intervals in SE and
LPE correlated to NREM, NREM-SWS and REM sleeps.
Using those relations we defined an automatic criteria.
Then we stage all rats signals using this criteria and com-
pare with their respective visual sleep inspections. In
figure 3 we show the results for one rat.

The automatic sleep staging accuracy and Cohen’s
kappa coefficient for the Sample Entropy and Local Pre-
dictability Error are in table I.
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FIG. 2: Simulated noise signal analysis. (a) signal (blue) and
Sample Entropy (red) for m = 2, τ = 1 and ε = 0.25. (b)
CPE matrix in gray scale (from black low value to white high
value) with same parameters as (a) and l = 20 time points.

Accuracy Kappa

SE 0.82 ± 2.10 0.67 ± 0.12

LPE 0.83 ± 3.10 0.65 ± 0.25

TABLE I: Automatic sleep staging accuracy and kappa index

V. CONCLUSION

In figure 3 we can notice a high correlation between
sleep cycles exchanges and SE and LPE. The phase space
transitions expected in sleep study are detected by SE
(uncertainty measure) with higher values for NREM sleep
and lower values for REM sleep. The same transitions are
also detected by LPE (predictability measure) but in a

opposite manner. The NREM-SWS sleep has intermedi-
ary values in both measures.

All measures were computed for others m, τ and ε
parameters, close to the ones cited in section IV with
similar results. This fact establish a robustness against
parameters for both techniques.

Those measures are independent of spectral analysis,
have high accuracy and, specifically in sleep study, the
difficult in dealing with theta and gamma bands cycles
was avoided [4, 6]. This novel approach is sensible to

FIG. 3: Variability measures for a CA1 LFP signal. (a) Visual
sleep staging; (b) Sample Entropy; (c) Local Predictability
Error.

non-linear and non-stationary data [9, 10] and it is pos-
sible to combine those two procedures, Sample Entropy
and Local Predictability Error, to build a new automatic
sleep staging procedure.
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PhD Thesis, Universidade de São Paulo (2010).

[7] Temujin Gautama, Danilo P. Mandic, and Marc M. Van
Hulle, A differential entropy based method for determin-
ing the optimal embedding parameters of a signal, Acous-
tics, Speech, and Signal Processing, 2003.

[8] L. F. Kozachenko, N. N. Leonenko. ”Sample Estimate of
the Entropy of a Random Vector”. Problemi Peredachi

Informatsii, 1987

[9] Joshua S. Richman, and J. Randall Moorman, “Physi-
ological time-series analysis using approximate entropy
and sample entropy”, American Journal of Physiology -
Heart and Circulatory Physiology, 278 (2000).

[10] Thomas Schreiber, “Detecting and analyzing nonstation-
arity in a time series using nonlinear cross predictions”,
Physical Review Letters, 78 (1997).

[11] G. Baggio, and A. Fonseca, “Complex dynamics for se-
mantic memory access in reading”, Journal of the Royal
Society Interface, 9 (2011).

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 1, N. 1, 2013.

DOI: 10.5540/03.2013.001.01.0214 010214-4 © 2013 SBMAC

http://dx.doi.org/10.5540/03.2013.001.01.0214



