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Abstract. The present work addresses several aspects associated with an efficient use of
the high-order Spectral Difference (SD) method for the simulation of compressible flows.
Flows of interest are assumed to be adequately modeled by the two-dimensional (2-D) Euler
or the 2-D Navier-Stokes equations. Issues associated with the use of curved boundaries are
discussed. Namely, for special cases where highly stretched meshes are required, the problem
of auto-intersecting elements is highlighted. Further developments on general order meshes
with an attention to node positioning are also discussed. Motivated primarily by the needs
of compressible viscous flows, the use of radial basis functions and mesh optimization will be
discussed in order to accommodate the interior nodes. Furthermore, an important validation
test for curved meshes is addressed, in order to demonstrate the capability implemented.
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1 Introduction

High-order numerical schemes represent the natural extension of current computa-
tional fluid dynamics (CFD) methods, which were developed over the past thirty years
for aerospace simulations. The current generation methods are mostly 2nd-order accurate
and have achieved a level of maturity and robustness desirable for everyday deployment in
aeronautical engineering scenarios. Likewise, several complementary methods were devel-
oped for time integration, convergence acceleration, shock capturing and for dealing with
geometric complexities. However, there are many problems that cannot be fully simulated
using low-order methods, such as vortex dominated flows. Moreover, high-order methods
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offer the possibility to reduce simulation costs for given solution accuracy levels, when
compared to low-order schemes.

There is room for improvement in many areas for high-order methods that must be
pursued before they can compete with industrial-level CFD solvers. Computational re-
source requirements and run time are typical metrics used to classify a specific method or
a combination of methods in a CFD solver. High-order schemes must cope with implicit
schemes, limiters or filters and mesh manipulation techniques that also need to be superior,
in comparison with the low-order counterparts. Therefore, a high-order method coupled
with a low-order mesh with linear elements, for instance, will degrade the accuracy of
the method near the domain boundaries. In order to overcome this problem and to fully
realize the advantages of higher-order methods, a correct description of curved bound-
aries is mandatory. The solver is currently enabled with implicit methods for convergence
acceleration whereas the mesh capabilities are still being recently developed.

The main contribution of the present work is to extend high-order curved mesh ca-
pabilities so as to fully explore high-order methods potential with respect to aerospace
applications. A study assessing the effects of a second order curved mesh generated from
a B-spline reconstruction revealed an improvement in the results for inviscid flow over
two-dimensional configurations [1].

The major motivation is the development of the ability of handling complex geometries
within both inviscid and viscous flows over aerospace configurations. This leads to two
major concerns with respect to both applications which are the extensions of the previous
studies. The first one is to be able to provide a general order curved mesh representation
and specify point locations by making sure there is no instability problems [2]. Lastly,
while auto-intersecting elements, or inverted elements, may not be a problem for the
inviscid case, viscous simulations bring the need to obtain a reasonable resolution for the
boundary layer. The refinement near the wall requires the propagation of the deformation
near into the interior domain in such a way that a highly refined quadrilateral mesh is still
capable of being curved. To deal with this issues two different approaches are discussed:
Radial Basis Functions and Mesh Optimization.

2 High-Order Boundary Treatment

In order to render the high-order reconstruction process manageable, it is of great
importance to consider curved meshes which better represent more complex geometries.
This also has a side effect of reducing the required number of cells in the domain. Further-
more, the use of piecewise linear approximations of a curved boundary leads to imprecise
solutions when using high-order schemes [3]. Therefore, it is mandatory to use a precise
description of the curved geometry of the boundary so as to obtain meaningful and accu-
rate results. The point is that performing a correct boundary treatment ought to lead to
more efficient results than refining the grid on its own.

The approach used to generate the high-order mesh in the present paper consists of
four subsequent steps, which can be summarized as creating the boundary representation
of the model, generating a linear coarse mesh upon it, defining new nodes for each domain
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cell and, ultimately, projecting these new nodes onto the model geometry boundaries. This
approach is considered an a-posteriori procedure as suggested in Ref. [4] and it overcomes
some of the obstacles of directly generating a high-order mesh whilst taking advantage of
the robustness of current linear mesh generators [5].

Although interior faces might not be deformed for inviscid problems, the ongoing
development is to propagate the curvature to the interior domain using Radial Basis
Functions or Mesh Optimization, which will be discussed later. In this sense, new interior
nodes will be placed on the linear edges using a correct prescribed movement dependent
on the curvature of the geometry. This is necessary to handle highly stretched meshes
that may be needed to capture boundary layer properties on a viscous flow.

A commonly used geometric entity that describes geometries in 2-D is the Non-Rational
B-Spline (NURBS) curve. The procedures undertaken in this paper assume that geome-
tries are generated through this type of B-spline and exported using the IGES (Initial
Graphics Exchange Specification) [7] standard file exchange format. The IGES file for-
mat provides the necessary information to reconstruct the B-splines [6] that recovers the
geometry. The Rational B-spline curve definition is represented by Equation (1) as follows:

B(u) =

∑n
i=0wiPiNi,k∑n
i=0wiNi,k

, (1)

where u is the parameter value of the B-spline, that varies in an interval of 0 to 100%
of the length of the curve. The fact that B-splines are defined as a function of its length
parameter will be crucial on the node projection step. The weights wi are associated with
each control point, defined by Pi. An arbitrary amount of n + 1 control points are used
to describe the informations of a B-spline of degree k. The basis functions, Ni,k, used in
the construction of the B-spline, use the information of a knot vector Ti to be recursively
defined by the Cox-de Boor formula [6]:

Ni,0(u) =

{
1, if ui ≤ u < ui+1

0, elsewhere
(2)

Ni,k(u) =

(
u− Ti

Ti+k − Ti

)
Ni,k−1(u) +

(
Ti+k+1 − u

Ti+k+1 − Ti+1

)
Ni+1,k−1(u), (3)

Often, the concern of viscous flows is the analysis of properties inside a thin boundary
layer. The dimension of a boundary layer is excessively small when compared to the
dimension of the model and, more importantly, huge gradients are observed within it,
which suggests that the mesh near this region ought to be well refined in order to capture
acceptable results. Moreover, the higher the Reynolds number, the more prohibitive will
be the mesh capable of capturing reasonable results. The higher-order meshes, in this
sense, may bring the advantage of properly representing the boundary, thus, reducing the
number of required elements to obtain the same results. It is crucial to understand that
these aspects have to be considered so as to generate a reliable and robust high-order
mesh.

Still within the context of a solution inside a boundary layer, a problem concerning
the transformation of a linear to a curved mesh known as “element inversion” needs to
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be highlighted. This problem comes from the fact that the properties inside a boundary
layer mostly vary on the direction orthogonal to the solid boundary, which allows the
mesh to be relatively less refined in the direction tangent to the boundary. In short, cells
that are capable of capturing properties inside the boundary layer have, in general, a high
aspect ratio which, in turn, makes those cells flat. In the case of overly flattened cells,
it is possible for the geometry to cross several cells at once and, in an attempt to curve
only the boundary cells, it will intersect with its own edge [8]. This element inversion is
translated to a negative area - or volume, in 3-D -, which directly affects the calculation
of the jacobians and, consequently, spoils the solution. Figure 1 depicts a case of a highly
stretched quadrilateral cell fitted to a highly curved boundary which leads to an invalid
element.

A
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A

B

D

C

Figure 1: Mapping of a non-valid curved element.

3 Radial Basis Function Formulation

For typical viscous aerospace problems, the gradients observed near the wall requires
the mesh to be highly stretched normal to the configuration. The process of curving the
boundaries described in Sec 2, in this case, generally generates problems of cells crossing
each other. The problem is that the curvature is being applied exclusively to the boundary
mesh nodes. The idea of using Radial Basis Functions (RBF) is to propagate this curvature
into the interior domain.

RBF are used to provide node movement for all mesh nodes given a prescribed move-
ment of some boundary nodes. The displacement of all mesh nodes without prescribed
movement is obtained by a sum of basis functions that depends on the Euclidean distance
between nodes that have prescribed movement and the interior nodes of the mesh. The
new displaced mesh is obtained in such a way that its topology is preserved.

4 Mesh Optimization

A different approach to deal with tangled meshes, a mesh with inverted elements,
consist of using mesh optimization. The optimization approach has shown promised results
[9, 13–15].
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Therefore a cost function fc is defined in order to evaluate the “quality” of the elements.
The cost function depends on a quality measure capable to identify inverted elements and
penalize this with a high cost. The idea is untangle the mesh and, at the same time,
improve the quality of all elements. Typical quality measures involve the condition number
and determinant of the Jacobian matrix [10,12], mean-ratio [9,13], among others [11,14,15].
This procedure defines an optimization problem:

Minimize fc, s.to v ∈ Ω (4)

where v is a vector with nodes coordinates and Ω represents the constraints that define
the problem geometry.

Practical methods to solve (4) are iterative. So, given an initial approximation v0

a sequence v1, v2, . . . is generated, in order to approximate it, at each new iteration, to
a solution of the problem. Among the iterative process, the gradient method, or some
variation, is the most used by the aerospace community. We compare this methods with
a very common one among the optimization community, the Newton method.

After the optimization process, the new interior nodes coordinates are optimized, ac-
cording to function fc.

5 Results

The numerical results presented here attempt to verify resolution and robustness of the
high-order SD method coupled with the different techniques listed in the paper. For the
results discussion, density is made dimensionless with respect to the freestream condition
and pressure is made dimensionless with respect to the freestream density times the speed
of sound squared.

An important validation for the curved meshes is the case of a subsonic inviscid flow
over a circular cylinder. A flow with freestream Mach number of 0.2 is simulated and
the solution for the Euler equations in this domain is expected to be twice symmetrical,
given that compressibility effects are small for this freestream Mach number. This test
demonstrates that spurious results can be observed for high curvature geometries, even
though a continued sequential refinement is performed over the linear mesh. The correct
representation of the geometry using higher order meshes, however, handles this effect
properly. A quadrilateral linear mesh composed by 16 cells in both radial and azimuthal
directions (16 × 16) is defined. Afterwards, even finer meshes with 32 × 32 and 64 × 64
cells are considered to assess the effects of using 2nd-order meshes.

The following results are obtained with a 3rd-order method, in which the solution is
reconstructed by a 2nd-order polynomial (P2). In this sense, the order of the polynomial
that reconstructs the mesh is compatible with the one that reconstructs the solution. The
results in Fig. 2 (a) show that a linear mesh exposes the flow to kinks in the geometry in
such a way that the flow can separate, even though an inviscid formulation is used for the
present computations. Hence, the order of the polynomial used to reconstruct the solution
is higher than the one used to reconstruct the geometry and, furthermore, the geometry
is linear. Therefore, lower-order erroneous solutions build-up from the coarse geometry
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representation. When a curved, valid quadratic mesh representation is considered, the
results are clearly symmetric and the numerical oscillations are effectively handled, i.e.,
they are eliminated, see Fig. 2 (b)-(c).

(a) (b) (c)

Figure 2: Mach contours for a 16×16 mesh using a 3rd-order SD method considering: (a)
linear mesh; (b) optimized quadratic mesh; (c) RBF quadratic mesh.

6 Concluding Remarks

The paper discusses several issues and results for an implementation of the high-order
SD method for compressible flows. The SD method uses a simple universal reconstruction
to yield high-order polynomial approximations of the solution. The main contribution
of the present work is to extend the previous framework that handles simple inviscid
meshes to a more appropriate approach of curvature propagation so as to obtain a smooth
high-order mesh that properly conforms even in the case of a highly stretched mesh.
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