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Abstract. In this paper we introduced a projection fuzzy associative memory (PFAM)
based on complete inf-semilattice (cisl) derived from complete lattice [0, 1]n by using refer-
ence function is called a semilattice based projection fuzzy associative memory (SL-PFAM).
Since the PFAM project to input pattern into the set of all max-C (C means conjunction)
combination of the fundamental memories set. In experimental section, we compare the
performance of SL-PFAM using fuzzy morphological associative memories (FMAMs) as ref-
erence functions for the reconstruction of gray scale images that were incomplete patterns
and corrupted by different types of noise.
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1 Introduction

Generally speaking, associative memories (AMs) allow for the storage of pattern asso-
ciations and the retrieval of the desired output pattern on presentation of a possibly
corrupted or incomplete version of an input pattern. Mathematically speaking, AMs is
content-addressable structure that maps a set of input patterns to a set of output patterns.
AMs can be either hetero-associative or auto-associative, where the input and output vec-
tors range over different vector spaces or over the same vector space. If an associative
memory provide a fuzzy rule base to be stored that is the inputs are the degrees of mem-
bership, and the outputs are the fuzzy system’s output. Such a system is called a fuzzy
associative memory (FAM) [3].

Fuzzy associative memories(FAMs) belong to the class of fuzzy neural networks(FNNs).
An FNN is an artifical neural network (ANN) whose input patterns, output patterns
and / or connection weights are fuzzy-valued [3]. Original FAMs was initiated in the
early 1990s by approach of Kosko’s FAM [7] also called fuzzy morphological associative
memories(FMAMs). There are some simple examples of FMAMs such as Kosko’s max-
min and max-product FMAM, max-min FMAM of Junbo at al., [7, 6]. After FMAMs grew
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out of a gray-scale associative memory model called morphological associative memory
(MAM) [9, 10]. In fact morphological associative memories perform elementary operations
of mathematical morphology (MM) in a complete lattices. Now recently, MM was extended
from complete lattices to complete inf-semilattices (cisl) by using reference function. A
complete inf-semilattice is a set in which every arbitrary subset has an infimum (but not
necessarily a supremum exist).

In this paper in section 3, we introduced a semilattice projection fuzzy associative mem-
ory (SL-PFAM) based on complete inf-semilattice derived from complete lattice [0, 1]n,
which project to input pattern into the set of all max-C combination of the fundamental
memory set. Finally, in experimental section we compare the performance of the SL-
PFAMs using the min-D FMAM, max-C FMAM and max-C PFAM (C and D stand for
conjunction and disjunction) as reference functions for gray scale images reconstruction.

2 Some Mathematical Background

Let L and M be complete lattices. Consider two arbitrary operators ε : L → M and
δ : M → L are erosion and dilation if and only if they commutes respectively with the
infimum and supremum operations for every subset X ⊆ L and Y ⊆M:

ε
(∧

X
)

=
∧
x∈X

ε(x) and δ
(∨

Y
)

=
∨
y∈Y

δ(y). (1)

Erosion and dilation are increasing operators, i.e., ∀x, y ∈ L, if x ≤ y then ε(x) ≤ ε(y) and
δ(x) ≤ δ(y), ∀x, y ∈ M. The erosion and dilation are related by the notion of adjunction
[4, 11]. Thus the pair (δ, ε) is an adjunction from L to M or that ε and δ are adjoint if
and only if we have

δ(x) ≤ y ⇔ x ≤ ε(y) ∀x ∈M y ∈ L. (2)

If L = M, then (ε, δ) is called an adjunction on L. The process of adjunction is of
fundamental importance in mathematical morphology since it allows to define a unique
dilation δ assoicated to a given erosion ε. Recently, Heijmans and Keshet [5] was developed
self-dual morphology based on inf-semilattices. According to Heijmans and Keshet, the
set L becomes a complete inf-semilattice (cisl) if we choose an arbitrary reference element
r ∈ L and use the following partial order:

a �r b⇔ r ∨ a ≤ b ∨ r and b ∧ r ≤ a ∧ r (3)

The corresponding infimum in (L,�r) is

k
r

i∈I
ai =

(
r ∧

∨
i∈I
ai

)
∨
∧
i∈I
ai =

(
r ∨

∧
i∈I
ai

)
∧
∨
i∈I
ai (4)

The ordering �r coincides with the usual ordering in Boolean lattices. In case of
complete inf-semilattices (L,�r), where the infimum

∧
is defined but the supremum

∨
is not necessarily so, it is only possible to have the same side of reference function. The
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class of fuzzy sets in X will be denoted by F(X) = [0, 1]X . Note that fuzzy set theory can
be used for the design of image operator since an image f : X → [0, 1] can be interpreted
as a fuzzy set of X. From now on, an image f ∈ F(X) will be called fuzzy image. Since
by the partial ordering on [0, 1] induces a partial ordering on F(X) also complete lattice.
If we select a reference function r ∈ F(X) and use the partial ordering f �r g define as
f(x) �r g(x) for all x ∈ X, then (F(X),�r) becomes a cisl.

The positive part (f − r)+ and the negative part (f − r)− of f − r for all f, r ∈ F(X)
are respectively defined by (f − r)+ = (f − r) ∨ 0 and (f − r)− = −(f − r) ∨ 0, where 0
denotes the null element of the F(X). The elements (f − r)+ and (f − r)− of the F(X)
are disjoint fuzzy sets, i.e., (f−r)+∧ (f−r)− = 0. Let us recall the following partial order
�r on F(X) into a cisl [5].

Proposition 2.1. Consider the binary relation �r on F(X) = ([0, 1]X,�r) that is defined
as follows:

f �r g ⇔ (f − r)+ � (g − r)+ and (f − r)− � (g − r)− (5)

We have that (F(X),�r) is a cisl whose least element is r. The infimum of an arbitrary
subset {fi : i ∈ I} of F(X) is given by

k
r

j∈J
fj =

∧
j∈J

(fj − r)+ −
∧
j∈J

(fj − r)− + r. (6)

Moreover precisely, (fr) denotes f − r for all f, r ∈ F(X). Note that f �r g is
equivalent to having both (fr)

+ ≤ (gr)
+ and (fr)

− ≤ (gr)
− . This observation leads to

the above expression can be written as:

k
r

j∈J
fj =

∧
j∈J

(fj)
+
r −

∧
j∈J

(fj)
−
r + r. (7)

2.1 Some Basic operations of fuzzy set theory

Definition 2.1. A fuzzy conjunction and fuzzy disjunction are define as increasing map-
pings C,D : [0, 1] × [0, 1] → [0, 1] that satisfies C(0, 0) = C(0, 1) = C(1, 0) = 0 and
C(1, 1) = 1 and D(0, 0) = 0 and D(0, 1) = D(1, 0) = D(1, 1) = 1 respectively. The
following operators are simple examples of fuzzy conjunction and fuzzy disjunction:

CM (x, y) = x ∧ y, CP (x, y) = x · y, CL(x, y) = 0 ∨ (x+ y − 1). (8)

DM (x, y) = x ∨ y, DP (x, y) = x+ y − x · y, DL(x, y) = 1 ∧ (x+ y). (9)

Definition 2.2. The binary operations I, Ī : [0, 1]× [0, 1] → [0, 1] are called fuzzy impli-
cation and fuzzy coimplication if they are decreasing in the first argument, increasing in
the second argument and satisfies the following conditions respectively:

I(0, 0) = I(1, 1) = I(0, 1) = 1 and I(1, 0) = 0.

Ī(0, 0) = Ī(1, 1) = Ī(1, 0) = 0 and Ī(0, 1) = 1.
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Some particular fuzzy implication and fuzzy coimplication, which were introduced by Gödel,
Goguen, and Lukasiewicz can be found below [1] respectively:

IM (x, y) =

{
1 ifx 6 y

y ifx > y.
, IP (x, y) = 1 ∧

(y
x

)
, IL(x, y) = 1 ∧ (y − x+ 1). (10)

ĪM (x, y) =

{
0 x ≥ y
y x < y.

, ĪP (x, y) = 0 ∨
(
y − x
1− x

)
, ĪL(x, y) = 0 ∨ (y − x). (11)

Furthermore, a fuzzy conjunction and a fuzzy implication, as well as fuzzy disjunction and
a fuzzy coimplication can be related by means of a fundamental concept of mathematical
morphology called adjunction [1].

Definition 2.3. A fuzzy conjunction C and a fuzzy implication I form an adjunction if
and only if C(z, ·) and I(·, z) are adjoint for every z ∈ [0, 1] i.e.

C(z, y) ≤ x ⇔ y ≤ I(x, z). (12)

Similarly a pair (D, Ī) forms an adjunction if and only if D(z, ·) and Ī(·, z) are adjoint
for every z ∈ [0, 1] i.e.,

D(z, y) ≥ x ⇔ y ≥ Ī(x, z). (13)

Thus the pairs (DM , ĪM ), (DP , ĪP ) and (DL, ĪL) are the examples of adjoint operators.

Let us recall the fuzzy matrix products that can be used to describe several FMAM
models [13, 12]. The above fuzzy operations C, D,I and Ī can be combined with maximum
or the minimum operation to yield the following matrix product. We recall the max-C
product and min-D product of A ∈ [0, 1]m×k and B ∈ [0, 1]k×n are respectively denoted
by E = A ◦B and G = A •B as follows:

eij =
k∨
ξ=1

C(aiξ, bξj), and gij =
k∧
ξ=1

D(aiξ, bξj)∀i = 1 . . .m, ∀j = 1 . . . n. (14)

Similarly, the min-I product and the max-Ī product denoted by H = A~B, K = A~̄B
respectively given by the following equations:

hij =

k∧
ξ=1

I(aiξ, bξj) and kij =

k∨
ξ=1

Ī(aiξ, bξj)∀ i = 1, . . . ,m, ∀ j = 1, . . . , n. (15)

Note that, Ī represent fuzzy coimplication that form adjunction with fuzzy disjunction D.

2.2 Brief review on the min-D FMAMs and the max-C FMAMs

2.2.1 Min-D FMAMs;

Let us recall the min-D fuzzy morphological associative memories corresponds to a single layer fuzzy
neural network (FNN) with neurons that compute the minimum of fuzzy disjunction operation.
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These neurons can be formulated in terms of min-D fuzzy matrix products. In mathematical form,
the min-D FMAMs is a mapping M : [0, 1]n → [0, 1]m determined by the following equation:

y =M(x) = M • x ∀ x ∈ [0, 1]n. (16)

where the symbol, “ • ” denote a min-D product and M represent the synaptic weight matrix,
which is belong to [0, 1]m×n. The resulting model will be called min-D FMAMs. Furthermore
observe that, the operator M represent an erosion if and only if D(·, x) is an erosion for every
x ∈ [0, 1] [13].

2.2.2 Max-C FMAMs, the negation of min-D FMAMs;

In this subsection we can also formulate, a max-C FMAMs by using max-C fuzzy matrix product.
Let W ∈ [0, 1]m×ndenote the synaptic weight matrix. Given an arbitrary fuzzy input pattern
x ∈ [0, 1]n, then we compute the corresponding fuzzy output pattern y ∈ [0, 1]m as follows;

y =W(x) = W ◦ x ∀ x ∈ [0, 1]n. (17)

where the symbol, “ ◦ ” denote a max-C product as defined in Eq. (14). Thus the operator W
yields a FMAM model if and only if the corresponding fuzzy conjunction corresponds to a dilation
in the second argument. In this case, the associative mapping W : [0, 1]n → [0, 1]m represents a
dilation.

3 Semilattice based Projection Fuzzy Associative Memory (SL-PFAM)

In this section, we introduce a semilattice projection fuzzy associative memory (SL-PFAM) based
on the cisl derived from [0, 1]n. For this let us recall the projection max-C fuzzy associative memory
(PFAM) defined by Santos and Valle [2], i.e., the max-C PFAM which project to input pattern in
the set

C(X) =

z =

k∨
ξ=1

C(ηξ,x
ξ) : ηξ ∈ [0, 1]

 (18)

of all combination of max-C of the fundamental memories set X = {x1, . . . ,xk} ⊂ [0, 1]n. Thus a
max-C PFAM is a mapping V : [0, 1]n → [0, 1]n determined by the following equation:

V(x) =
∨
{z ∈ C(X) : z ≤ x} ∀ x ∈ [0, 1]n. (19)

Such as the min-D FMAM, the PFAM also exhibit perfect recall of corrupted or incomplete
version of patterns if and only if the fuzzy conjunction is associative as well as has a right identity.
The advantages of V has excellent absolute storage capacity, one step convergence if employed
with feedback. On the other hand, the PFAM is more suited for the reconstruction of patterns
corrupted by dilative noise, but it is unable to deal with arbitrary noise. Consider adjoint operators
C and I, then can be expressed the outputs V(x) and ηξ by means of max-C and min-I products
as following;

V(x) =

k∨
ξ=1

C
(
ηξ,x

ξ
)

such that ηξ =

n∧
j=1

I(xξj ,xj)∀ξ = 1, . . . , k. (20)

for input pattern x ∈ [0, 1]n. More generally, we define the following theorem which represent
a SL-PFAM based on cisl derived from [0, 1]n by using reference function ρ : [0, 1]n −→ [0, 1]n,
that is guaranteed to yield perfect recall of the original patterns if the reference function recall the
original patterns.
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Theorem 3.1. Consider an adjunction (C, I) and fuzzy conjunction is associative as well as has
a right identity. Given a fundamental memory set X = {x1, . . . ,xk} ⊂ [0, 1]n. Thus a SL-PFAM
Vρ(x) : [0, 1]n → [0, 1]n based on semilattices be define as:

Vρ(x) = V(x− ρ(x))+ − V(x− ρ(x))− + ρ(x) ∀x ∈ [0, 1]n. (21)

If ρ(x) = xξ for all ξ = 1, . . . , k. Thus Vρ yields perfect recall of the original patterns i.e.,
Vρ(xξ) = xξ ∀ξ = 1, . . . , k. For an arbitrary input pattens x ∈ [0, 1]n, the output pattern satisfying
the following relationship;

ρ(x) �ρ(x) Vρ(x) �ρ(x) x . (22)

Note that, in particular the M, W and V used as reference functions in following subsection.

3.1 Simulations in Gray-Scale Images Reconstruction

In this section we perform some experiments using the eight images i.e., (Lena, Cameraman,
Airplane, House, Vehicle, Boat, Church and Watch) that are available at the internet site of the
Mathematical Imaging and Computational Intelligence Laboratory, University of Campinas [8].
These images have size 128 × 128 and 256 gray levels. In this simulations, we converted these
images into ten fuzzy images by normalizing the respective pixel values within the range [0, 1]. For
each of these images, we generated a vector uξ,∈ [0, 1]16384 for ξ = 1, . . . , 8.

In this experiment, we probed the SL-PFAM, i.e., Vρ with reference functions (choice) as the
min-D FMAMM, the max-C FMAMW and V , with the noisy, incomplete and distorted patterns
represented by ũ1, . . . , ũ7 as shown in the top row of Fig.1. The first two images cameraman
and lena in the top row of Fig.1 corrupted by pepper noise and salt noise with probability 25%
respectively. The next three images in that row represent incomplete versions of the original images.
The last two images corrupted by salt and pepper noise with probability 20% and additive Gaussian
noise with mean 0 and variance 0.05. The below row of Fig.1 depicts the outputs produced by
PFAM VLρ with aforementioned reference function. The Table 1 show the numerical results of VLV ,

VLM and VLW such as slightly better then V, M and W (reference functions), but the numerical
results of these reference functions not shown due to the space limitation.

ũ1 ũ2 ũ3 ũ4 ũ5 ũ6 ũ7

VLW(ũ1) VLV (ũ2) VLV (ũ3) VLM(ũ4) VLW(ũ5) VLM(ũ6) VLM(ũ7)

Figure 1: The top row shows distorted, incomplete and corrupted versions of the original
images. The bottom rows depict the images that were recalled by VLV , VLW and VLM.
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Table 1: NMSE produced by SL-PFAM Models in applications to the original patterns.

Input pattern: ũ1 ũ2 ũ3 ũ4 ũ5 ũ6 ũ7

SL-PFAM-VLV 1.0000 0.0002 0.1162 0.1134 0.9670 0.9699 0.9227
SL-PFAM-VLW 0.0097 1.0000 1.0820 1.0047 0.1291 1.0473 0.8716
SL-PFAM-VLM 0.8532 0.0098 0.1222 0.1115 0.8193 0.9178 0.8021

4 Conclusions

We presented a projection fuzzy associative memory on semilattice derived from complete lattice
[0, 1]n using reference function, with an application for the reconstruction of gray-scale images.
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