
Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics

A note on sub-orthogonal lattices

João Eloir Strapasson1

School of Applied Sciences, Unicamp, Limeira, SP

Abstract. It is shown that, given any k-dimensional lattice Λ, there is a lattice sequence
Λw, w ∈ Z, with sub-orthogonal lattice Λo ⊂ Λ, converging to Λ (unless equivalence), also
we discuss the conditions for faster convergence.

Keywords. Sub-orthogonal Lattice, Dense Packing, Spherical Code.

1 Introduction

A large class of problems in coding theory are related to the study lattices having a
sub-lattices with orthogonal basis (sub-orthogonal lattices). Several authors investigated
the relationship of sub-orthogonal with spherical codes, and with q-ary codes (see [1,3,8–
10,13,15–18]), but of course that does not restrict to these problems ( [2, 4, 5, 12]).

In general, lattice problems concentrated in determining certain parameters, such as
the shortest vector, packing radius and packing density; radius cover and cover density.
The points of are interpreted as elements of a code, thereby determining a coding scheme
and efficient decoding is essential. There are several buildings in the literature that estab-
lish the relationship of linear codes with lattices ( [7]).

This paper is organized as follows. We will fix the notations and definitions of lattices
in Section 2. We present the construction of a sequence of lattices in section 3. In Section
4, we present a case study for special cases lattices for: the root lattices Dn and En

(n = 7, 8) and Leech lattice Λ24.

1.1 Background definitions and results

A lattice in Rn is an discrete additive subgroup of Rn, Λ, which has a generator
matrix with full rank, n × k, B, e.g, v ∈ Λ ↔ v = utB (u ∈ Zk, k is said rank of Λ.
The determinant of a lattice is det(Λ) = det(G), there G = BBt is an Gram matrix of
lattice Λ and the volume of lattice is

√
det(Λ) (volume of the parallelotope generate for

rows of B). The minimum norm of Lattice Λ, ρ(Λ), is min{‖v‖;v ∈ Λ and v 6= 0} and

center density packing of Λ is δΛ =
ρ(Λ)n

2n vol(Λ)
. Two lattices Λ1 and Λ2, with generator

matrices B1 and B2 are equivalence if, only if B1 = cUB2O, there c ∈ R, U is unimodular
matrix (integer, k × k matrix with det(U) = ±1) and O is the orthogonal, n × n matrix
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(OOt = In, In identity matrix n × n). Dual lattice of Λ is a lattice, Λ∗, obtained for all
vectors u ∈ span(B) (there span(B) is a vector space generated by the rows of B) with that
u ·v ∈ Z, ∀v ∈ Λ, the generator matrix of Λ∗ is B∗ = (BBt)−1B, in particular, B∗ = B−t if
n = k. A sub-lattice, Λ′, is a subset of Λ which is also lattice, if Λ′ has generator matrix
is formed by orthogonal row vectors we will say that it is a sub-orthogonal.

Since the lattice is a group, remember that the quotiente of the lattice Λ by sublattice
Λ′, Λ

Λ′ , is as a finite abelian group with M elements, where M is a ratio of volume of

sublattice Λ′ by the volume of lattice Λ, e.g., M = vol(Λ′)
vol(Λ) . The M elements of lattice Λ,

can be seen as an orbit of null vector in k-dimensional torus Λ
Λ′ . This essentially establishes

the relationship with a central spherical class codes, as well as a class of linear codes track
construction “A” and similar constructions, see more details ( [7]).

2 Suborthogonal sequences

Consider a lattice Λ ⊂ Rn, of rank n, contain a the orthogonal sub-lattice, Λo ⊂ Λ,
such that Λo is equivalence to Zn, e.g., the generator matrix of Λo is cO, with OOt = In.
Let B and B∗ = B−t the generator matrices of Λ and Λ∗ (respectively). Assuming that
B∗ has integer entries, Then lattice, Λ, with generator matrix B = adj(B∗) = det(B∗)B∗−t
has a sub-orthogonal lattice, Λo, with generator matrix B∗B = det(B∗)In. The ratio of

volume measured quantities points and in this case it is vol(Λo)
vol(Λ) = det(B∗B)

det(B) = det(B∗).
In general, we want to build code with many points and as we increase the amount of

points the lattice come on, unless of equivalence, a similar lattice to a previously chosen.
This motivates the following construction:

Proposição 2.1. Let’s Λ be a lattice whose dual of the generator matrix B∗ has integer
entries and Λ∗w with matrix generator B∗w = wB∗ + P, where B∗, is generator matrix of
equivalent lattice of Λ∗, P is an integer matrix any and w is integer. Then lattices Λ∗w and
Λw with generator matrices B∗w and Bw = adj(B∗w) (respectively) to satisfy 1

wΛ∗w −→w→∞

Λ∗ and by continuity of the matrix inversion process 1
det( 1

w
B∗w)

Λw −→w→∞ Λ.

Corolário 2.1. Let’s Λ be a lattice whose dual of the generator matrix B∗ and Λ∗w with
matrix generator B∗w = wB∗+P, where B∗, is generator matrix of equivalent lattice of Λ∗,
P = bwB∗e−wB∗, in other words B∗w = bwB∗e (rounded entries) . Then lattices Λ∗w and Λw

with generator matrices Bw and Bw = adj(B∗w) (respectively) to satisfy 1
wΛ∗w −→w→∞ Λ∗

and by continuity of the matrix inversion process 1
det( 1

w
B∗w)

Λw −→w→∞ Λ.

The corollary allows to extend the use of the proposition for whose lattices dual have
not, un less equivalence, integer generator matrix.

When it comes to convergence, it’s natural curiosity with regard to convergence, this
motivates the following propositions:

Proposição 2.2 (faster dual convergence). Let’s Λ∗w and Λw as in Proposition 2.1 Then
faster convergence is obtained by imposing P = S B, where S is antisymmetric matrix
n × n and minimizing inputs PPt, naturally P identically zero is the best convergence,
because there is no error.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, v. 6, n. 1, 2018.

DOI: 10.5540/03.2018.006.01.0301 010301-2 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.01.0301


3

Proposição 2.3 (faster convergence). Let’s Λ∗w and Λw as in Proposition 2.1 Then faster
convergence is obtained by imposing P = B∗S, where S is antisymmetric matrix n×n and
minimizing inputs BPtGPBt, naturally P identically zero is the best convergence, because
there is no error.

The structure of the group obtained by the quotient of lattice sequence, Λw, by their
respective orthogonal sub-lattice can be determined and extended, applying the Theorem
2.4.13 [H. Cohen book pp 75].

In particular, B∗ is lower triangular matrix and P = Cn = (ci,j) (cyclic perturbation),
where ci,j = 1 if j = i + 1 and ci,j = 0 otherwise, the quotient is cyclic group although
convergence is not nearly quadratic.

Lattices of rank n that unless equivalence are sub-lattices the integer lattice Zn, play
an interesting role with regard to convergence as discussed below with case study, next
section.

3 Case study

In this section we present the construction applied to special cases: Dn, En(n = 7, 8),
and Λ24. Illustrate the performance of the quadratic (P = 0n null matrix n × n) versus
quadratic convergence associated with groups of no more than two generators (P = Pn,
good pertubation n × n), it is unfortunately not possible to obtain a dimension anyone
quotient that is cyclic and at the same time has quadratic convergence. We will display
also results showing the performance of this construction with limiting associated spherical
codes proposed in the paper [13], the problem was partially resolved in the previous article
( [1]), but the solution is presented only for special lattices and the solution in each case
depends on many calculations explored by sub-orthogonal lattice and this article will not
explore the concept of initial vector.

3.1 The root lattice Dn (n ≥ 3)

We consider the generate matrix of D∗n as D∗n and good perturbation is Pn:

D∗n =


2 0 · · · 0 0
0 2 0 · · · 0
...

...
. . .

...
...

0 0 · · · 2 0
1 1 · · · 1 1

 and Pn =



0 1 0 ··· 0 0 1
−1 0 1 ··· 0 0 0

0 −1 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 0 1 0

0 0 0 ··· −1 0 1
−1 0 0 ··· 0 0 1

 .
The good perturbation is Pn as above, this case the quotient is cyclic case odd n, the

performance is illustrated in Table 1 and in Table 2

3.2 The root lattice En

Unless equivalence assuming that E∗7, E∗8,1 and E∗8,2 are generated by matrices E∗7 , E∗8,1
and E∗8,2 and the good perturbation P7, P8,1 and P8,2.
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Table 1: 3-dimensional performance, for perturbations 0n, Pn and Cn respectively.

M(w) δ(Λw) Group M(w) δ(Λw) GroupM(w) δ(Λw) Group

4 0.176777 Z2 ⊕Z2 7 0.133631 Z7 3 0.0721688 Z3

32 0.176777 Z2 ⊕Z4 ⊕Z4 38 0.162221 Z38 26 0.0969021 Z26

108 0.176777 Z3 ⊕Z6 ⊕Z6 117 0.169842 Z117 93 0.116923 Z93

256 0.176777 Z4 ⊕Z8 ⊕Z8 268 0.172774 Z268 228 0.129349 Z228

500 0.176777 Z5 ⊕Z10 ⊕Z10 515 0.174183 Z515 455 0.137602 Z455

864 0.176777 Z6 ⊕Z12 ⊕Z12 882 0.174964 Z882 798 0.143442 Z798

1372 0.176777 Z7 ⊕Z14 ⊕Z14 1393 0.175439 Z1393 1281 0.147780 Z1281

2048 0.176777 Z8 ⊕Z16 ⊕Z16 2072 0.175750 Z2072 1928 0.151126 Z1928

2916 0.176777 Z9 ⊕Z18 ⊕Z18 2943 0.175964 Z2943 2763 0.153783 Z2763

4000 0.176777Z10 ⊕Z20 ⊕Z20 4030 0.176117 Z4030 3810 0.155943 Z3810

Table 2: 3 to 6-dimensional performance, for perturbations Pn.

δ(Λw)
δ(D3)

Group δ(Λw)
δ(D4)

Group δ(Λw)
δ(D5)

Group δ(Λw)
δ(D6)

Group

0.7559 Z7 1. Z3 ⊕Z6 0.6718 Z41 0.675 Z10 ⊕Z10

0.9177 Z38 1. Z9 ⊕Z18 0.8732 Z682 0.8576 Z17 ⊕Z170

0.9608 Z117 1. Z19 ⊕Z38 0.9371 Z4443 0.9269 Z74 ⊕Z370

0.9774 Z268 1. Z33 ⊕Z66 0.9631 Z17684 0.9565 Z65 ⊕Z2210

0.9853 Z515 1. Z51 ⊕Z102 0.9759 Z52525 0.9714 Z202 ⊕Z2626

0.9897 Z882 1. Z73 ⊕Z146 0.9831 Z128766 0.9799Z145 ⊕Z10730

0.9924 Z1393 1. Z99 ⊕Z198 0.9875 Z275807 0.9851 Z394 ⊕Z9850

0.9942 Z2072 1. Z129 ⊕Z258 0.9904 Z534568 0.9885Z257 ⊕Z33410

0.9954 Z2943 1. Z163 ⊕Z326 0.9924 Z959409 0.9909Z650 ⊕Z26650

0.9963 Z4030 1. Z201 ⊕Z402 0.9938Z1620050 0.9926Z401 ⊕Z81002

E∗7 =


1 0 0 0 −1 0 1
0 1 0 0 −1 −1 1
0 0 1 0 −1 −1 0
0 0 0 1 0 −1 −1
0 0 0 0 2 0 −2
0 0 0 0 0 2 0
0 0 0 0 0 0 2

 , E∗8,1 =


1 0 0 0 −1 0 1 1
0 1 0 0 −1 −1 1 0
0 0 1 0 −1 −1 0 1
0 0 0 1 0 −1 −1 −1
0 0 0 0 2 0 −2 −2
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2

 , E∗8,2 =


1 1 1 1 1 1 1 −7
−1 1 1 1 1 1 1 −5
0 0 2 2 2 2 2 −10
0 0 0 2 2 2 2 −8
0 0 0 0 2 2 2 −6
0 0 0 0 0 2 2 −4
0 0 0 0 0 0 2 −2
0 0 0 0 0 0 0 4

 ,

P7 =


0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −1 0 0 0 0 0
−1 −1 −1 0 −1 0 0
0 0 −1 1 −1 0 −1
0 0 1 1 1 0 1
1 0 0 −1 1 −1 0

 ,P8,1 =


0 1 1 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 1 0 −1 0 0 −1 0
0 0 0 0 0 0 0 0
0 −1 −1 0 0 0 1 −1
0 0 1 1 1 0 1 0
−1 −1 0 0 0 −1 0 1
1 1 0 −1 0 0 −1 0

 ,P8,2 =


−1 0 0 0 0 0 1 0
−1 −1 0 0 0 0 0 0
−1 −1 −1 0 1 0 0 0
−1 0 −1 −1 0 1 0 0
−1 0 0 −1 0 0 0 0
−1 −1 1 −1 0 −1 1 0
−1 −1 0 0 1 −1 0 0
0 0 0 0 0 0 0 0

 .
The performance is illustrated in Table 3 (note that the density ratio is deployed close

and the amount of associated points are: 1.664.641.200 points for dual lattice 10E∗8,1+P8,1

and 11.430.630.576 for dual lattice 9E∗8,2 + P8,2 (very more points in the second case).
The Table 4 illustrates the performance applied in spherical codes, details in [13], the
non-null perturbation is better in the case of E8,1 representation, moreover, point out that
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the performance is similar to the second representation with null perturbation (in bold:
distances near and number of nearby points)

Table 3: 7 to 8-dimensional performance, for representations E∗7, E∗8,1 E
∗
8,2 and perturba-

tions P7, P8,1 and P8,2.

δ(Λw)
δ(E7)

Group δ(Λw)
δ(E8,1)

Group δ(Λw)
δ(E8,2)

Group

0.2346 Z2 ⊕Z68 0.1204 Z2 ⊕Z78 0.2706 Z2 ⊕Z2 ⊕Z364

0.4161 Z2 ⊕Z1552 0.4022 Z4 ⊕Z2316 0.5065 Z2 ⊕Z4 ⊕Z15128

0.5966 Z2 ⊕Z15468 0.622 Z6 ⊕Z26154 0.6918 Z2 ⊕Z6 ⊕Z189252

0.7208 Z2 ⊕Z92192 0.7521 Z8 ⊕Z165912 0.7993 Z2 ⊕Z8 ⊕Z1251376

0.8005 Z2 ⊕Z391540 0.8284 Z10 ⊕Z729030 0.8616 Z2 ⊕Z10 ⊕Z5612060

0.8522 Z2 ⊕Z1313328 0.8754 Z12 ⊕Z2495268 0.8997 Z2 ⊕Z12 ⊕Z19429704

0.8869 Z2 ⊕Z3708572 0.9059 Z14 ⊕Z7137186 0.9243 Z2 ⊕Z14 ⊕Z55966708

0.911 Z2 ⊕Z9191488 0.9266 Z16 ⊕Z17842224 0.9411 Z2 ⊕Z16 ⊕Z140558432

0.9284Z2 ⊕Z20572452 0.9412 Z18 ⊕Z40176702 0.9529Z2 ⊕Z18 ⊕Z317517516

0.9412Z2 ⊕Z42432080 0.952 Z20 ⊕Z83232060 0.9615 Z2 ⊕Z20 ⊕Z659296120

3.3 The Leech lattices Λ24

The laminate lattice is generally dense in their respective dimensions in special di-
mensions, n = 9, 15, 16, 19, 20, 21, 24 admit integer representation un less equivalence, and
in these cases can analyse the fast convergence, consider n = 24 the matrix generator of
Leech Lattice, unless equivalence is L24,1 and L24,1, obtained as sub-lattice of E8

1 and E8
2

(respectively). Consider here L∗24,1 = 4L−t24,1 and L∗24,2 = 8L−t24,2.

We know that the Leech lattice can be regarded as a sub-lattice of the lattice E8 ×
E8 × E8, as in the 8-dimensional case: we use the non-null perturbation the first case

(P24,1 =

[ P8,1 0 0
0 P8,1 0
0 0 P8,1

]
) and the second case to null perturbation (P24,2 = O) and we

analyse the performance point of view of the spherical codes, see Table 5 (the first two
columns refer to the first case).

4 Conclusions

We conclude that all n-dimensional lattice, up less scale, can be approximated by a
sequence of lattices that have orthogonal sub-lattice. Furthermore, there is a degree of
freedom (n(n−1)/2) for quadratic convergence, this freedom induces quotient group with
different number of generators and can make convergency more fast in certain applications,
for example in the case of spherical codes are reticulated target has some multiple minimum
vectors of some canonical vector, we find a non-null pertubation as it will be more efficient.
We present here a method for finding lattices with sub-orthogonal, our method is simpler,
more general and more efficient than the one presented in [1].
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Table 4: Show spherical code performance 8-dimensional case, for different representations.

E8,1 E8,2

0

Distance M − Points

0.707107 4096
0.707107 104976
0.500000 1048576
0.415627 6250000
0.366025 26873856
0.306802 92236816
0.270598 268435456
0.241845 688747536
0.218508 1600000000

Distance M − Points

0.707107 65536
0.500000 1679616
0.382683 16777216
0.309017 100000000
0.258819 429981696
0.222521 1475789056
0.195090 4294967296
0.173648 11019960576
0.156434 25600000000

P8,i

0.839849 9264
0.641669 156924
0.509472 1327296
0.419589 7290300
0.355527 29943216
0.307914 99920604
0.271283 285475584
0.242296 723180636
0.218821 1664641200

0.639702 121024
0.468092 2271024
0.366403 20022016
0.299852 112241200
0.253223 466312896
0.218878 1567067824
0.192596 4497869824
0.171869 11430630576
0.155124 26371844800
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