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Abstract. A new variant of the hybrid metaheutic MPCAHJ (Multi-Particle Collision
Algorithm with Hooke-Jeeves method) is presented. Multi-Particle Collision Algorithm is a
metaheuristic algorithm that performs a search on the search space. With the addition of the
Rotation-Based Learning mechanism to the exploration search, a maior area of the search
space has chance to be visited. The Hooke-Jeeves direct search method exploites the best
solution found, allowing to achieve better solutions. The performance of all implementation
are evaluated over twenty-two well known benchmark functions.
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1 Introduction

Vibration-based damage identification is an application in the field of system identi-
fication. In structures and systems, cracks and other damages cause changes in physical
properties than can be detectable in the modal parameters (notable frequencies, mode
shape, and modal damping).

The damage identification problem can be described as an inverse problem, and solved
using optimization techniques. The solution is usually unstable. Small random errors,
such as some perturbation on the system or noise in the measurements, can cause large
oscillations on the solution.

Metaheuristic algorithms are powerful methods from the Computational Intelligence
field that can be applied to many real-world optimization problems.

Multi-Particle Collision Algorithm (MPCA) [1] is a metaheuristic algorithm based
on the physics in the nuclear reactor. This algorithm has been successfully used in the
solution of optimization problems such as fault diagnosis [2], automatic configuration of
neural networks applied to different problems such as atmospheric temperature profile
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identification [3], data assimilation [4], climate prediction [5] and damage identification
[6–8].

This work presents the application of the hybrid algorithm Rotation-Based Sampling
Multi-Particle Collision Algorithm with Hooke-Jeeves (MPCAHJ), to a bechmark problem
in the structure identification area called Kabe Problem.

2 Hybrid Algorithm: RBSMPCA-HJ

2.1 Multi-Particle Collision Algorithm (MPCA)

MPCA is a optimization algorithm inspired in the physics of the collision inside of a
nuclear reactor [1, 9]. There are to main phenomena occurring: the scattering, where an
incident particle could be scattered by a target nucleus, and the absorption, in which the
particle could be absorbed by the target nucleus.

MPCA is an populational algorithm, with a set of particles (candidate solutions) trav-
elling inside a nuclear reactor (search space). Each particle is perturbed, creating a new
particle that could be absorbed, which means that the previous particle will be substituted
by the new, if the new fitness is better. If a perturbed particle is worse than the original
one, the particle will be recreated in a new random point within the search space. This
process, called as scattering, occurs with a probability depending on the fitness of the
particle.

The particles behave cooperatively, strategy called blackboard. The best particle in
the set is over-copied for all particles each some number of function evaluations.

A maximum number of function evaluations (NFEmpca) is defined as stopping criterion
for the MPCA.

The current version MPCA is implemented in FORTRAN 90, and uses MPI libraries
for parallel processing.

2.2 Rotated-Based Learning (RBL) and Rotated-Based Sampling
(RBS)

The RBL concept is an extension of the Opposition-Based Learning (OBL) and the
Quasi-Opposition Based Learning (QOBL) mechanisms [10].

The OBL concept was introduced in 2005 by Tizhoosh [11], using the idea that the
opposite point of a defined point have a probability of bringing a better solution than the
original point in a optimization problem.

After the OBL mechanism, other mechanisms, such as Quase-Opposition Based
Learning, Quase-Reflective Based Learning, Center-Based Sampling Learning (CBS), and
Rotation-Based Learning have been defined, getting better results than the OBL [10].

All those mechanisms have been applied to improve the performance of some Artificial
Intelligence and Computational Intelligence methods, such as Artificial Neural Networks,
Fuzzy Logic, and Metaheuristic Algorithms [12].

The Rotation-Based Sampling (RBS) mechanism is a combination of the CBS and
RBL mechanisms.
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Figure 1: Multi-Particle Collision Algorithm

Hooke-Jeeves Pattern Search Method

The pattern search method of Hooke-Jeeves (HJ) [13] is a well known algorithm consist-
ing of the repeated application of exploratory moves about a base point which, if successful,
is followed by pattern moves. HJ have been used in some hybrid algorithms solving the
damage identification problem, such as AS+HJ [14], qG-HJ [7], and MPCA-HJ [6,8].

Details about the algorithm of HJ can be found in the literature [13].

3 Empirical Analysis

3.1 Experimental configuration

The experiments were made in a personal computer with 4x Intel R© CoreTM i7-6500U
CPU @ 2.50GHz, with 16 GB of memory, operating with Ubuntu 16.04.2 LTS.

The number of experiments was set in 25. For the MPCA, the number of particle was
set in 10, the blackboard occurs each 100000 function evaluations, the number of function
evaluations in the exploitation process is set in 1000, while the IL and SL parameters are
set in 0.7 and 1.1, respectively. For the RBS mechanism, β0 = 3.14 rad, and δ = 0.25. For
the HJ, the parameter ρ = 0.8, and hmin = 1 × 10−11.
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3.2 Results of the experiments

The method is tested over a mass-spring system called Kabe Problem. This system
include 8 masses and 14 springs in a distribution as shown in Figure 2. Dimensionless
values for the masses and stiffnesses are shown in Table 2.

Experiment were made on noiseless data and data with a 5% noisy data, both generated
synthetically running the direct model. Elements 4 and 7 are simulated as damaged, each
one with 10% of stiffness reduction.

Figure 3 shows the mean of the damages for 25 experiments on the noiseless data.
Results are perfect in comparison with the original damage.

Figure 4 shows the boxplot and the Table 1 present the mean and median for the
damages for 25 experiments on the noisy data. Both damages were well estimated. For
the 5th and the 6th elements appeared a dispersion in the estimations, but medians are
low for both cases: 0.08 and 1.12, respectively. The mean for the 6th is affected for three
outliers that appeared with values of 50%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Mean 0.49 -0.04 -0.01 8.9 -0.15 8.4 10.1 -0.09 0.21 0.18 -0.41 0.37 0.10 -0.07
Median -0.01 0 -0.01 10 0.08 1.1 10.0 -0.02 0.05 0.03 -0.09 0.09 0.08 -0.06

Table 1: Mean and median of the damages estimated for the experiments on the noisy
data

m1 m2

m3

m4

m5

m6

m7

m8

k9 k10 k11

k12 k13 k14

k1

k2

k3

k5

k4 k6

k7

k8

Figure 2: Kabe Problem
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Table 2: Dimensionless mass and stiffness for the Kabe Problem
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Figure 3: Results for the the Damages identification using RBSMPCA-HJ on the Kabe
Problem - Mean for 25 experiments on Noiseless data
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Figure 4: Results for the Damage identification results using RBSMPCA-HJ on the Kabe
Problem - Boxplot for 25 experiments on Noisy data
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4 Final remarks

In this study, the hybrid metaheuristic RBSMPCA-HJ was applied to the damage
identification in the Kabe Problem. Due to the combination of two good methods It
takes advantages of the exploration mechanism of the MPCA, with the complement of the
Rotation-Based Sampling, and intensification power of the HJ method.

The method was tested over noiseless data and noisy data, obtaining good results in
both cases.
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