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Numerical Simulation of Fins in a High Temperature Context
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Abstract. The present work shows the influence of the mutual heat transfer on the effecti-
veness of finned surfaces. Numerical simulations are carried out through a sequence of linear
problems, possessing an equivalent minimum principle, that has as its limit the solution of
the original problem. The presented tools allow the employment of realistic hypotheses.
The problems are simulated with the aid of a finite difference approximation. This work
accounts for the the steady state heat transfer process in rigid fins which experiences con-
vective and radiative heat exchange. Some typical results are shown in order to illustrate
the methodology. Results indicate that mutual radiation can significantly impact the actual
heat transfer response of a fin.
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1 Introduction

The main techniques of heat transfer enhancement are usually those that enhance exis-
ting heat transfer elements. A growing demand for engineering projects is related to energy
transitions that require a rapid flow of heat. Modern times require high performance heat
transfer components with progressive weight reduction, volume and cost. Heat transfer
on extended surfaces comes to be the study of these components of high performance heat
transfer with respect to the most varied parameters and their respective behaviors in the
thermal mapping.

This work proposes a study about the interaction between fins and primary surface,
mutual radiation between adjacent fins and the combined effect of mutual radiation and
environmental radiation. Mutual radiation has a fundamental role in projects related to
photovoltaic panels, aircraft, satellites, thermoelectric generators, thermal treatments of
components and in the most different applications industries involving high temperatu-
res. Recent studies have shown the relevance of such considerations in the most diverse
engineering applications.
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Bjork et al. (2014) [2] investigated different mechanisms of heat loss in a thermoelec-
tric generator. The model works with non-linear boundary conditions, including mutual
radiation between adjacent surfaces. Alifanov et al. (2016) [1] presented a methodological
approach for the thermal mapping of a small spacecraft. The mathematical model of heat
transfer considers the external radiant flux field and the influence of mutual radiation
between spacecraft surfaces. Cheema et al. (2016) [3] investigated numerically the heat
transfer in tubular furnaces considering mutual radiation properties among their consti-
tuents. Tubular furnaces are used in the annealing of crystalline structures of metals at
high temperatures and the determination of the temperature distribution inside a tubular
furnace is an important coefficient for efficiency in the heat treatment.

The present work numerically investigates the performance of coupled heat trans-
fer in longitudinal fins arrays considering mutual radiation between radiant elements.
Conduction-radiation heat transfer process is an inherently non-linear phenomenon in
which the coupling in the contour of the body is mathematically represented by a non-
linear relationship between the absolute temperature and its outside normal derivative,
in which the unknown is the temperature distribution . The solution to the problem is
given by the limit of a sequence whose elements are obtained from the minimization of a
quadratic functional.

2 Numerical Formulation

Enhancement heat transfer techniques have been the subject of multiple studies for
several geometries. Experimental procedures are more costly and may present different
results from standards, due to the difficulty of working with low temperature differences
and/or high coefficients of heat transfer. Therefore, numerical simulation techniques are
required to obtain effective and realistic results.

2.1 Mathematical model

Krauss (2002) [7] shows that steady-state analyzes become realistic in most problems
concerning extended surface applications, some specific cases such as high-speed aircraft
applications and automatic control devices require care with transient term.

Therefore, the steady-state heat equation without internal heat generation with cons-
tant thermal conductivity and non-linear boundary conditions for single fin is
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in a configuration described by 0 < x < L, 0 < y < b e 0 < z < δ.

For two fins in steady state, as shown in Fig. 1, without internal heat generation with
constant thermal conductivity and nonlinear boundary conditions, taking into account
mutuality in the emission of radiation between adjacent fins, combined effect of mutual
and environmental radiation, in addition to the interaction between the fins and their
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respective primary surfaces, the heat equation becomes
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for dimension L much greater than b, we have for 0 < y < b
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(3)
Eq. 4 is a portion referring to the emission of radiation between fins, as shown
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k(T ) is the thermal conductivity of the regions Ωi, κ12 the form factor, ξ the term from
the kirchhoff transform for problems with non constant thermal conductivity and d the
distance between the fins. The boundary conditions (b.c.) are homogenous of Neumann
in Γ1, Γ3 e Γ4 and Dirichlet b.c. in Γ2. Equations 1, 2, 3 e 4 employ the term |T |3.T in
place of term T 4 to guarantee operator coercivity of infinite dimension, thus preserving
the physical structure of the phenomenon of heat transfer.

Figura 1: - Dual fins and boundary conditions.

2.2 Sequence of problems

In order to ensure the existence of a minimum, solution for Eq. 1 and Eq. 2, is
necessary and sufficient to show that I, is continuous, convex and coercive functional.

The solution of problem in Eq. 1 may be reached as the limit of a sequence whose
elements ate obtained form the minimization of a quadratic functional.
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The first variation of Eq. 5 describes the variational formulation of the physical pro-
blem, which must be represented mathematically by minimizing the coercive functional.
The existence of the minimum principle provides a simple and precise tool for numerical
simulation of the phenomenon of heat transfer.

In other words:
ω = lim

i→∞
Φi (6)

in which the elements of the sequence [Φ0, Φ1, Φ2, ..., Φi] are obtained by

div (gradΦi+1) = αΦi+1 − βi in Ω1 (7)

and
− (gradΦi+1)n = 0 on ∂Ω1 (8)

the β auxiliar term:

βi = αΦi−1 −
(
σ |Φi−1|3 Φi−1 − h (Φi−1 − T∞)

)
for i = 0, 1, 2, ... (9)

where α is sufficiently large positive constant and Φ0 ≡ 0. This constant is evaluated
from an priori estimate for the upper bound of the solution and ensures a bounded and
nondecreasing sequence [Φ0, Φ1, Φ2, ..., Φi].

The problem proposed in this work originally has Robin boundary conditions, but
the proposed methodology simplifies the convergence solution mode, imposing Neumann
boundary condition without physical sense, but being an efficient mathematical tool.

In other words, the minimum of Ii+1 is reached for the field v = Φi+1 which satisfies
in Eq. 1. It is to be noticed that Φi is a known function, when we look for the minimum
of the functional. The tools employed for minimizing Ii+1[v] are exactly the same ones
employed for solving linear heat transfer problems. The constant α must satisfy the
following relationship:

α ≥ d

dη
|η|
(
h.eλ + σ|eλ|3.eλ

)
for 0 < η < sup

∂Ω
ω (10)

that is equivalent

α ≥ h

δ
, δ = eλ + σ|eλ|3.eλ (11)

It is remarkable that any α satisfying Eq. 11 ensures convergence, but this is a sufficient
condition. The convergence may be reached even for values of α which do not satisfy Eq.
11.

The sequences [Φ0, Φ1, Φ2, ..., Φi] and [β0, β1, β2, ..., βi] are, for each i, non-decreasing,
provides only the solution with physical sense. This fact allows us to conclude that the
solution is the unique non-negative, since, from classical thermodynamics, the absolute
temperature must be a non-negative value real field, we conclude that Eq. 1 and Eq. 7
are thermodynamically equivalent. The algorithm associated to the minimization of the
functional I provide an efficient procedure for simulating the considered energy transfer
phenomena. In addition, this procedure provides only the (desired) solution with ther-
modynamical sense.
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3 Results and Discussion

Recent studies have reported numerical-experimental problems in multi-finned heat-
sinks with linear boundary conditions using multiphysics software [4] and [5]. Others
obtained numerical solutions in FDM, FEM and FVM in the most diverse matrices ne-
glecting radiation nonlinear boundary conditions [9] and [8]. Dogonchi (2016) [6] verified
behavior of the steady state single rectangular fin with nonlinear boundary conditions and
thermal conductivity varying linearly with temperature.

This work introduces the idea of the sequence of linear problems to find a solution of the
steady-state problem in fins with non-linear b.c whose thermal conductivity is constant.
Moreover, the mathematical analysis is based on the modifications of Murray-Gardner’s
hypotheses so that realistic problems are solved. Such procedures include the effects
of: non-zero heatsink temperature, interaction between fin and primary surface, mutual
radiation between adjacent fins, combined effect of mutual radiation with environmental
radiation and the interaction of radiation with the associated structure.

3.1 Numerical convergence

Table 1 illustrates the numerical convergence process, presents Φ1, Φ2, Φ3, Φ4, Φ5, Φ6

and Φ∞ obtained with three different values of α (α = α1 = 1.101W/m2K, α = α2 = α2
1

and α = α3 = α3
1).

Tabela 1: - Numerical convergence verification
Φi α = α1 α = α2 α = α3

i=10 .5945 0.5941 0.5940

i=100 5.2373 5.2245 5.0802

i=1000 10.0053 10.0052 10.0021

i=1200 10.0081 10.0076 10.0059

i=1387 10.0081 10.0081 10.0079

i→∞ 10.0081 10.0081 10.0081

3.2 Single and dual fins with and without radiation

Figures 2 was obtained for fins with height h = 10mm and thickness δ = 1mm. The
meshes consisted of 50 x 50 nodes under surrounding temperature of T∞ = 300K and
primary surface temperature of Tb = 500K.

Analyzing the results obtained and comparing them in Fig. 2, is evident the relevance
of the phenomenon of radiation in extended surfaces, being clear that realistic experiments
should not neglect this phenomenon.

3.3 Dimensionless parameters

This item will take a brief analysis of item 3.2 taking into account dimensionless
parameters in order to generalize the verified observations.
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Figura 2: - Single and dual fins with and without radiation.

For N number of nodes, k thermal conductivity, C1 and C2 convection and radiation
constants respectively, we have that the variation of the dimensionless temperature and the
dimensionless position along the fin will have particularities according to the γ parameter
showed in Fig. 3, that is, the relation between height and distance between the fins. Fig.
3 shows that when this relationship tends to infinity the interaction between the fins is
despicable, for analytical aims there is no interaction between fins, accordingly considering
single fin. U1, U2 and U∞ being the local temperatures and ambient temperature. In Fig.
3 shows the relationship between dual and single fin temperatures with dimensionless
position, attempting to the maximum point in this curve.

Figura 3: - Comparison and relation of dimensionless temperatures with position.

Being U1, U2 and U∞ respectives local temperatures and environment temperature.
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The Fig. 3 denotes a relation between dual and single temperatures fins varying with the
dimensionless position, it is observed that there is a maximum point for such analysis.

4 Conclusions

The knowledge of the actual thermal mapping conditions plays a key role for an op-
timized design. A considerable methodology was presented in the present study, using
theoretical, analytical and numerical treatment for finned surfaces. Results have shown
both the relevance of the radiation and the heat mutuality so that there is an effective
and realistic mapping.
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