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An explicit numerical method for random differential

equations driven by diffusion-type noises
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In this work we propose a numerical integrator with appealing B-stability properties for the
effective integration of Random Ordinary Differential Equations (RDEs) under the influence
of Itô-diffusion noise. Basically the introduced integrators are obtained by transforming the
RDE to a stochastic differential equation and then adapting the well-known local lineari-
zation approach to the special structure of the resulting equation. The introduced method
enables to overcome much of the numerical instability that are frequently found when using
explicit integrators and is computationally more efficient than stable implicit ones. Results
on the convergence and stability of the proposed method are discussed and we also outline
some key issues concerning the efficient computational implementation of the corresponding
numerical schemes.
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1 Introduction

Noise plays an important role in modelling dissimilar phenomena. In particular, the
mathematical modelling of physical systems and several real-world problems leads to diffe-
rential equations containing some inherent randomness due to uncertainties. A differential
system can involve uncertainly in different ways. Particularly, during the last decades, in
different areas including engineering, biology and social sciences, deterministic differential
models have been replaced by Random Differential Equations (RDEs) of the form (see
e.g., [8])

x
′
(t) = f(t,x(t),y(t)), t ∈ [t0, T ], (1)

which are pathwise Ordinary Differential Equations (ODEs) containing a multidimensional
stochastic process y(t) in their vector field function, where y(t) ∈ Rn designates a random
input process uncoupled with the solution x(t) ∈ Rd. The study of this kind of equations
is very important in modern applied mathematics and in fact nowadays RDEs are used in
a wide range of applications, see e.g. [1], [13], [12], [11], [15], [16], [17].

Just as in the deterministic case, closed-form expressions for the solution of RDEs are
often unobtainable, and so the construction of approximation methods for the treatment
and simulation of RDEs has become an important need.
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In this paper we are concerned with the approximation of RDEs for which the random
process y(t) is an Ito-diffusion driven by additive noise. That is, y(t) satisfies a stochastic
differential equation (SDE) of the form

dy(t) = a (t,y(t)) dt+
m∑
j=1

bj (t,y(t)) dwj
t , t ∈ [t0, T ] , (2)

where (w1
t , . . . , w

m
t ) denotes an m-dimensional standard Wiener process. Here, y(t) ∈ Rn,

and a, bj are smooth enough nonlinear functions.

At a first glance one could think that some of the existing numerical schemes for
ODEs can be used pathwise for RDEs, but the driving stochastic process y(t) has at most
Hölder continuous sample paths, so the vector field in (1) is at most Hölder continuous
with respect the time variable, so numerical schemes for ODEs when applied to RDEs are
not convergent or rarely attain their traditional order.

Similarly to the deterministic scenario, there exists a variety of important issues in de-
signing practical numerical integrators for RDEs. In particular, in the stochastic scenario
stability and computational efficiency of the numerical schemes are the more important
and desirable properties. Taking all this into consideration, some numerical integrators
have been proposed in literature e.g., [4], [3], [7], [9], [2]. However, most of these methods
or are of an implicit nature (involving the numerical solution of a system of nonlinear al-
gebraic equations at each integration step, that typically increase the computational effort
of these numerical integrators) or are explicit integrators, having the appealing feature of
retaining the standard order of convergence of the classical deterministic schemes, but at
the expense of high computational cost and low stability.

The aim of the present work is to introduce an explicit and B-stable numerical in-
tegrator for (1)-(2). For this we adapt the local linearization approach (see [5]) -which
has been successfully applied in the framework of deterministic and stochastic differential
equations- to the special structure of the resulting equation (1)-(2) after rewriting it as a
full SDE. Consequently by exploiting this special structure of this SDE our approach will
provide a method able to overcome much of the numerical instability that are frequently
found when using explicit integrators and being computationally more efficient than stable
implicit ones.

The paper is organized as follows. After this introduction, section 2 presents the
deduction of the proposed method and the convergence and stability is considered. In
section 3 are given details on the effective implementation of the exponential involved in
the proposed method.

2 The proposed integrator

Let (Ω,F , P ) be a complete probability space, and (Ft)t≥0 be an increasing right
continuous family of complete sub σ-algebras of F . Consider the d-dimensional RDE (1)
where y(t) is a Ft-adapted finite continuous Itô-diffussion processes solution of the SDE
(2).
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Interpreting the RDEs (1) as a (d + n)−dimensional SDEs we obtain the augmented
system

d

(
x(t)
y(t)

)
=

(
f(t,x(t),y(t))
a (t,y(t))

)
dt+

m∑
j=1

(
0

bj (t,y(t))

)
dwj

t , (3)

The idea to construct our method is to use the partially-uncoupled structure of this
equation to adapt conveniently the local linearization technique from [5].

Let (t)h = {tn : n = 0, 1, . . . , N} be a partition of the time interval [t0, T ] with, for
simplicity, equidistant stepsize h < 1, i.e., defined as a sequence of times t0 < t1 < . . . <
tN = T such that tn = t0 + nh, for n = 0, 1, . . . , N . Starting from the initial value x0, the
approximations {xi} to {x (ti)}, (i = 1, 2, . . . , N) are obtained recursively as follows.

For each time interval [tn, tn+1] we use the Itô-formula to obtain the linearization

(
f(t,x(t),y(t))
a (t,y(t))

)
≈
(
fn
an

)
+ Jn

(
x(t)− xn
y(t)− yn

)
+ qn (t− tn),

with

Jn =

(
[fx]n [fy]n

0 [ay]n

)
=


[
∂f
∂x

]
(tn,xn,yn)

[
∂f
∂y

]
(tn,xn,yn)

0
[
∂a
∂y

]
(tn,yn)

 ,

qn =

( [
q1
]
n[

q2
]
n

)
=


∂f
∂t (tn, xn, yn)[

∂a
∂t + 1

2

m∑
j=1

(I⊗bᵀj ) axx bj

]
(tn,yn)

 ,

fn = f(tn, xn, yn), an = a (tn, yn) .

Now the solution x(tn+1) of (1) in Λn could be approximated by the solution of the
linear SDE

d

(
x(t)
y(t)

)
=

(
Jn

(
x(t)− xn
y(t)− yn

)
+ qn (t− tn) +

(
fn
an

))
dt+

m∑
j=1

(
0

bj (t, yn)

)
dwj

t ,(
x(t)
y(t)

)
=

(
xn
yn

)
.

However, taking advantage of the special structure of the equation above (note that
y(t) is uncoupled with x(t)), our proposal to approximate x(tn+1) is to solve first the
equation for y(t) and then to consider the linear nonhomogeneous equation for x(t), by
using yn and also the previously computed approximation to y(tn+1).

In this way

yn+1 = yn + M14 +
(
M12M

>
11

) 1
2
ξn,
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where

M=eCnh,

Cn =


[ay]n

[
bb>
]
n

[
q1
]
n

an
0 − [ay]>n 0 0
0 0 0 1
0 0 0 0

 ,
with b = (b1, . . . , bk)> and ξn a sequence of k−dimensional i.i.d. normal random vec-

tors.

By using this computed value yn+1 and solving the linear random (but not stochastic)
equation for x(t) we finally obtain

xn+1 = xn + LeDnhr, (4)

where

Dn =

 [fx]n

(
1
h [fy]n

(
M14 +

(
M12M

>
11

) 1
2 ξn

)
+
[
q1
]
n

)
fn

0 0 1
0 0 0

 ∈ R(d+2)×(d+2),

L = [Id 0d×2], r =

[
0(d+1)×1

1

]
,

We refer to [5] for details about how this representation can be obtained.

2.1 Convergence and stability

2.1.1 Pathwise convergence

In this section main results concerning the trajectory-wise convergence and B-stability
of the methods is considered.

We have the following theorems:

Theorem: Let’s suppose that there exist almost surely a finite stochastic processes
L(t) such that the Lipschitz condition

‖f(t, u, y)− f(t, v, y)‖ ≤ L(t) ‖u− v‖ ,

is satisfied. Also suppose that a, b are smooth enough. Then the numerical integrator (4)
is almost surely globally convergent and we have that with probability one

sup
n
‖x(tn)− xn‖ = O(h),

and for b = b(t)

sup
n
‖x(tn)− xn‖ = O(h1.5).
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2.1.2 B-stability

Let us consider a RDE such that the vector field is dissipative, that is

〈f(t, x1, y)− f(t, x2, y), x1 − x2〉 ≤ K ‖x1 − x2‖2 ,

with K < 0.
Then it implies that any solution converges pathwise to a unique stationary solution

of the equation.
We are interested in numerical methods reproducing this behavior of the continuos

one. In such a case the method is termed B-stable.
We have the following important theorem
Theorem: The numerical integrator (4) is B-stable. In fact, for any two numerical

map (4) xn and zn we have

‖xn+1 − zn+1‖ ≤ ‖xn − zn‖ .

3 Implementation issues

The numerical implementation of {xn} is reduced to the use of a algorithm to compute
exponential of matrices. In particular, those algorithms based on the rational (p, q)-Padé
approximation ( p ≤ q ≤ p+2) combined with the “scaling and squaring” strategy provide
stable approximations to the matrix exponential. Nowadays, professional mathematical
software, such as MATLAB, provide efficient codes for implementing a number of such
algorithms. (see [6], [14]) in such a way that the computational saving achieved are very
significant.

We first summarize the existing Padé algorithm with “scaling and squaring” strategy
on which we based our computer implementation of the method.

3.0.3 The Padé algorithm for computing the matrix exponential

The (p, q) rational Padé approximation to eC is defined by

Pp,q(C) = [Dp,q(C)]−1Np,q(C),

where

Np,q(C) =

p∑
j=0

(p+ q − j)!p!
(p+ q)!j!(p− j)!

Cj ,

and

Dp,q(C) =

q∑
j=0

(p+ q − j)!q!
(p+ q)!j!(q − j)!

(−C)j .

Diagonal approximation (that is, p = q) are preferred, since Pp,q with p > q (p < q) is less
accurate than Pp,p (Pq,q), and Pp,p (Pq,q) can be evaluated at the same cost. From now
on, we denote Dq,q(C), Nq,q(C), Pq,q(C) by Dq(C), Nq(C), Pq(C) respectively.
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eC can be well approximated by Padé only near the origin, that is, for small ‖C‖. For
this reason eC is approximated by

(
Pq(

C
m)
)m

where m is the minimum integer such that∥∥C
m

∥∥ < 1
2 . In order to reduce the number of matrix multiplications, the idea is to choose m

to be a power of two. Then
(
Pq(

C
m)
)m

can be efficiently computed by repeated squaring.
The Padé algorithm with scaling-squaring strategy for computing eC can be described

as follows.

1. Determine the minimum integer k such that
∥∥C
2k

∥∥ < 1
2

2. Compute Nq(
C
2k

) and Pq(
C
2k

)

3. Compute Pq(
C
2k

) = [Dq(
C
2k

)]−1Nq(
C
2k

), by solving the system Dq(
C
2k

)Pq(
C
2k

) = Nq(
C
2k

)
(using, for instance, a suitable Gaussian elimination)

4. Compute [Pq(
C
2k

)]2
k

by squaring Pq(
C
2k

) k times

4 Conclusions

In this work we introduce an explicit numerical integrator for the computer simulation
of the RDEs driven by Itô-diffusion processes. We analyzed the convergence and the
B-stability of the method. Remarkably the method is explicit and is fully stable. This
suggest the potential applicability of this integrator for stiff RDEs, which points out to
future work.
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for the simulation and estimation of Stochastic Differential Equations”.
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