Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Otimização mono-objetivo no controle do mosquito Aedes aegypti por meio de um modelo de duas populações com influência da pluviosidade

Amália Soares Vieira de Vasconcelos¹ Lillia dos Santos Barsante² Rodrigo Tomás Nogueira Cardoso³ José Luiz Acebal Fernandes⁴ Programa de Pós-Graduação em Modelagem Matemática e Computacional - Centro Federal de Educação Tecnológica de Minas Gerais, CEFET, Belo Horizonte, MG

Resumo. O mosquito Aedes aegypti é o principal transmissor das arboviroses dengue, chikungunya, zika e febre amarela que vem acometendo a população brasileira ao longo dos anos. Este trabalho visa estudar o efeito da aplicação de inseticidas e/ou larvicidas, durante o verão e a primavera (que são as estações do ano mais prováveis para surtos das doenças), minimizando a população de mosquitos bem como o tempo de investimento de controle. O modelo de otimização mono-objetivo utilizado leva em conta a influência da pluviosidade para o desenvolvimento do vetor. Foi utilizado o algoritmo genético real polarizado para as simulações computacionais. Aplicando as duas estratégias de controle propostas, o controle degrau concomitante e o controle decrescente concomitante, observou-se a diminuição do número de mosquitos Aedes aegypti ao longo do tempo.

Palavras-chave. Otimização Mono-objetivo, Algoritmo Genético, Controle do Aedes aegypti

1 Introdução

A dengue é uma das principais arboviroses transmitidas pelo mosquito Aedes aegypti que vem acometendo, anualmente, entre 50 e 100 milhões de pessoas no mundo, de acordo com a Organização Mundial de Saúde [6]. O número de casos das outras doenças causadas pelo Aedes aegypti, como febre de Chikungunya, Zika e febre amarela também tem crescido nos últimos anos. Dentre estas doenças, apenas a febre amarela possui uma vacina preventiva que é de fácil acesso à população brasileira, pois a vacina contra a dengue não está disponível na rede pública de saúde e há restrições para crianças, idosos, grávidas. Portanto, a melhor forma de controle continua sendo o combate ao vetor.

 $^{^{1}}$ amaliasv@hotmail.com

²lilliabarsante@gmail.com

³rodrigoc@des.cefetmg.br

⁴acebal@dppg.cefetmg.br

 $\mathbf{2}$

Diante desta situação, este trabalho propõe um estudo mono-objetivo para verificar a quantidade mínima de inseticidas e/ou larvicidas para controle que deve ser aplicada no menor tempo possível, otimizando os custos financeiros envolvidos com a aquisição de inseticidas, custo com pessoal (e.g., agentes comunitários) e custo relativo que o número de fêmeas fertilizadas irá demandar para tratar doentes (e.g., custo hospitalar, custo com medicamentos, custo com agentes de saúde). Sabendo que o verão é uma das estações do ano na qual existe o maior número de casos notificados das doenças que o vetor transmite, este trabalho foca o estudo nesta estação e também na primavera, que além de registrar um grande número de casos é a estação que antecede o verão.

Diversos trabalhos na literatura como [3] e [4] sugerem que o crescimento da população do mosquito *Aedes aegypti* varie conforme os índices pluviométricos. Então, para observar os efeitos climáticos das estações do ano e sua influência no aumento do número de mosquitos, um modelo matemático foi utilizado levando em consideração a dependência de dados da pluviosidade de uma determinada cidade.

O modelo matemático utilizado neste trabalho é descrito na Seção 2. O sistema dinâmico é uma das restrições do problema mono-objetivo estudado, sendo abordado na Seção 3. Os resultados são discutidos na Seção 4 e, finalmente, a conclusão deste trabalho é apresentada na Seção 5.

2 Modelo Matemático

O modelo matemático entomológico utilizado considera duas populações do mosquito Aedes aegypti. As variáveis deste sistema, em função do tempo, são representadas por $\vec{X}(t) = (A(t), F(t))$, em que A(t) representa a população de mosquitos na fase imatura (ovos, larvas e pupas) e F(t) representa a população alada de fêmeas. As fêmeas adultas são as únicas capazes de transmitir doenças durante sua picada, pois necessitam de sangue para maturar seus ovos. O modelo está constituído de modo que seus parâmetros sejam dependentes da pluviosidade acumulada semanalmente P(t). O sistema não-autônomo de equações diferenciais não lineares que representa a dinâmica das populações do Aedes aegypti com dependência da pluviosidade é dado por:

$$\begin{cases} \frac{dA}{dt} = f(P(t))\phi(P(t)) \left[1 - \frac{(A(t))}{C(P(t))}\right] F(t) - (\alpha(P(t)) + \mu_A(P(t)) + u_A(t))A(t) \\ \frac{dF}{dt} = \gamma(P(t))\alpha(P(t))A(t) - (\mu_F(P(t)) + u_F(t))F(t) \end{cases}$$
(1)

em que f(P(t)) representa a fração de ovos viáveis que a população de fêmeas F(t) contribui depositando em potenciais criadouros; $\phi(P(t))$ a taxa intrínseca de oviposição por unidade de indivíduo. O termo entre colchetes $\left[1 - \frac{(A(t))}{C(P(t))}\right]F(t)$ constitui um fator logístico que atenua $\phi(P(t))$, caso a população da fase imatura (ovos, larvas e pupas) do mosquito seja suficientemente grande comparada com o valor de C(P(t)) que representa a capacidade do meio associada a abundância de nutrientes, espaço, dentre outros. A taxa de desenvolvimento da fase imatura para a alada é dada por $\alpha(P(t))$ e $\gamma(P(t))$ corresponde à fração da fase aquática que é fêmea. As taxas de mortalidade natural e adicional por unidade de indivíduo específica de cada compartimento são dadas por $\mu(P(t))$ e u(t),

3

respectivamente. A parametrização linear para a dependência dos parâmetros com a pluviosidade P(t) pode ser verificada com maior clareza em [2]. A Tabela 1 apresenta os valores adotados para os parâmetros do modelo.

Tabela 1: Parâmetros do modelo.

Parâmetro	Mínimo - máximo	Fonte	Parâmetro	Mínimo - máximo	Fonte
$\int f$	$0,9 - 0,9 \text{ dias}^{-1}$	[1]	α	$0,019 - 0,19 \text{ dias}^{-1}$	[5]
ϕ	$0,69714 - 11,2 \text{ dias}^{-1}$	[8] e [5]	μ_A	$0,01397 - 0,06001 \text{ dias}^{-1}$	[8]
C	$100 - 100 \text{ dias}^{-1}$	[7]	μ_F	$0,02615 - 0,11612 \text{ dias}^{-1}$	[5]
γ	$0,5 - 0,5 \text{ dias}^{-1}$	[1] e [9]	$c_A \in c_F$	Via otimização	-

A região do sistema (1) com sentido biológico é definida por:

$$\Gamma = \{ (A, F) \in \mathbb{R}^2 : A, F \ge 0 \text{ e } 0 \le A \le C \}$$

$$(2)$$

ou seja, todas as populações do sistema são não negativas e a população da fase imatura não excede a capacidade do meio. Considerando os parâmetros do sistema (1) invariantes no tempo, é possível encontrar o ponto de equilíbrio trivial X_0 e o ponto de equilíbrio não trivial X_1 , dados por:

$$X_0 = \begin{cases} A = 0 \\ F = 0 \end{cases} \quad e \quad X_1 = \begin{cases} A = C\left(1 - \frac{1}{Q_0}\right) \\ F = \frac{\gamma\alpha}{(\mu_F + c_F)}C\left(1 - \frac{1}{Q_0}\right) \end{cases}$$
(3)

e a taxa de descendentes basal Q_0 do vetor é dada por:

$$Q_0 = \frac{\gamma \alpha}{(\alpha + \mu_A + c_A)} \times \frac{f\phi}{(\mu_F + c_F)} \tag{4}$$

Biologicamente, Q_0 pode ser interpretado como o produto da fração da população imatura que se torna alada pela fração de ovos viáveis gerados por uma única fêmea. Observe que $Q_0 \ge 0$, pois todos os parâmetros são positivos. Se $Q_0 \ge 1$, o ponto crítico X_1 terá significado biológico. Quando $Q_0 = 1$, o ponto crítico X_1 é biologicamente trivial, pois $X_1 = X_0$, ponto onde ocorre uma bifurcação transcrítica do sistema.

O estudo da estabilidade do sistema é determinado pelos autovalores associados às Jacobianas B_{P_0} e B_{P_1} avaliadas nos pontos críticos X_0 e X_1 , respectivamente, dadas por:

$$B_{X_0} = \begin{bmatrix} -(\alpha + \mu_A + c_A) & f\phi \\ \gamma \alpha & -(\mu_F + c_F) \end{bmatrix} e B_{X_1} = \begin{bmatrix} \frac{-f\phi\gamma\alpha}{(\mu_F + c_F)} \left(1 - \frac{1}{Q_0}\right) - (\alpha + \mu_A + c_A) & -\frac{f\phi}{Q_0} \\ \gamma \alpha & -(\mu_F + c_F) \end{bmatrix}$$
(5)

Os autovalores associados a $X_0 e X_1$ são respectivamente as raízes de $\lambda_0^2 - T_0 \lambda_0 + \gamma_0 = 0$ e $\lambda_1^2 - T_1 \lambda_1 + \gamma_1 = 0$, em que $T_{0,1} e \gamma_{0,1}$ são respectivamente os traços e os determinantes das matrizes B_{X_0,X_1} :

$$T_0 = -[(\alpha + \mu_A + c_A) + (\mu_F + c_F)], \qquad \gamma_0 = (\alpha + \mu_A + c_A)(\mu_F + c_F) - f\phi\gamma\alpha$$

4

$$T_{1} = -\left[\frac{f\phi\gamma\alpha}{(\mu_{F} + c_{F})}\left(1 - \frac{1}{Q_{0}}\right) + (\alpha + \mu_{A} + c_{A}) + (\mu_{F} + c_{F})\right]e$$

$$\gamma_{1} = \left[2f\phi\gamma\alpha\left(1 - \frac{1}{Q_{0}}\right) + (\alpha + \mu_{A} + c_{A})(\mu_{F} + c_{F}) - f\phi\gamma\alpha\right]$$
(6)

A estabilidade dos pontos críticos X_0 e X_1 é descrita a seguir: se $\gamma_0 < 0$ o ponto X_0 é uma sela, e assim, instável; se $\gamma_0 > 0$ o ponto X_0 é nó assintoticamente estável, pois $T_0^2 - 4\gamma_0 = [(\alpha + \mu_A + c_A) - (\mu_F + c_F)]^2 + 4f\phi\gamma\alpha > 0$ e $T_0 < 0$; se $\gamma_1 < 0$ o ponto X_1 é uma sela, e assim, instável; se $\gamma_1 > 0$ o ponto X_1 é nó assintoticamente estável, pois $T_1^2 - 4\gamma_1 = \left[\frac{f\phi\gamma\alpha}{(\mu_F + c_F)}\left(1 - \frac{1}{Q_0}\right) + (\alpha + \mu_A + c_A) - (\mu_F + c_F)\right]^2 + \frac{4f\phi\gamma\alpha}{Q_0} > 0$ e $T_1 < 0$.

3 Otimização Mono-objetivo

A função objetivo deste trabalho, Equação (7), procura minimizar o custo com o controle tanto na fase imatura quanto na fase alada, bem como o custo social. Desta forma, a aplicação de controle é feita de forma simultânea nas duas fases.

$$J(u,t) = \frac{1}{2} \left(c_1 t_1 u_A^2 + c_2 t_2 u_F^2 + c_3 \int_0^{90} F^2 dt \right)$$
(7)

Sistema dinâmico da Equação(1)

sujeito a:
$$\begin{cases} 0 \leqslant u_A \leqslant 1\\ 0 \leqslant u_F \leqslant 1\\ 0 \leqslant t \leqslant 90 \end{cases}$$
(8)

sendo c_1 o custo relativo com controle na fase imatura; c_2 o custo relativo com controle na fase adulta; c_3 o custo social, relativo que o número de fêmeas fertilizadas irá demandar para tratar doentes; u_A a variável referente à intensidade de larvicidas aplicados na fase imatura; e u_F a variável referente à intensidade de inseticidas aplicados na fase alada.

O domínio das variáveis de decisão é o intervalo de [0,1] por corresponder as possíveis taxas percentuais de aplicação de controle. Como cada estação do ano possui 90 dias de duração, o tempo varia de 0 a 90 dias. Dois tipos de investimento de controle foram utilizados neste trabalho: o degrau concomitante e o decrescente concomitante.

O primeiro é caracterizado por realizar a aplicação de inseticidas u_A durante o tempo t_1 e, simultaneamente, o controle u_F é aplicado durante o tempo t_2 , com t_1 e $t_2 \in [0, 90]$. No tipo de controle decrescente concomitante a aplicação de inseticidas u_A é realizada durante o tempo t_1 e, simultaneamente, o controle u_F é aplicado durante o tempo t_2 , diferenciando do tipo de controle anterior pela quantidade de inseticidas aplicada reduzir de forma decrescente ao longo do tempo.

Foram testados dois cenários distintos para o custo com controle e para o custo social. Os cenários 1 e 2 consideram uma variação do custo com inseticidas para as fases imatura e adulta, já que não há conhecimento sobre qual deles é maior, e penalizam o custo social com um valor menor, pois sabe-se que ele é maior que os demais. A Tabela 2 mostra os valores estimados para os cenários. Tabela 2: Parâmetros de controle utilizados nos cenários.

Cenário	c_1	c_2	<i>c</i> ₃		
1	10	100	0,01		
2	100	10	0,01		

Os dados de pluviosidade foram obtidos por meio do Instituto Nacional de Pesquisas Espaciais (INPE) durante os anos de 2002 a 2016. Para facilitar a simulação da evolução das populações do vetor, ao invés de otimizar cada uma delas durante 15 anos, reduziu-se a série de chuvas a um ano utilizando a média diária destes anos.

4 Resultados

A dinâmica das populações do vetor da dengue foi obtida por meio do algoritmo de *Runge-Kutta* de quarta ordem, implementado na linguagem C, com passo (γt) = 0,01. O algoritmo genético real polarizado foi escolhido para a busca de soluções do problema de otimização mono-objetivo deste trabalho pela facilidade de implementação, conforme os parâmetros descritos na Tabela 3.

Tabela 3: Parâmetros utilizados durante a execução do Algoritmo Genético mono-objetivo

Parâmetros	Valor	Parâmetros	Valor
Número de gerações	200	Probabilidade de ocorrer cruzamento	90%
Tamanho da população	200	Probabilidade de ocorrer polarização	30%
Tamanho da mutação	0,05	Fator de extrapolação no cruzamento	0,2
Probabilidade de ocorrer mutação	5%	Fator de dispersão na função de aptidão	1,8

Foram feitas 30 execuções para cada experimento e os gráficos da evolução das populações representarão o melhor valor de função objetivo encontrado dentre as execuções. Optou-se por apresentar os resultados do cenário 2, pelo fato de obter melhores soluções que o cenário 1 em todos os controles testados. A seguir, serão apresentados os resultados da estação primavera e do verão.

4.1 Primavera

A Figura 1 mostra o efeito da aplicação dos dois tipos de controle em comparação com o caso sem controle. O tipo de controle decrescente concomitante utiliza maior quantidade de controle durante o início de sua aplicação, que vai diminuindo ao longo do tempo. Desta forma, como o controle é decrescente, não consegue ser tão atuante quanto o controle degrau concomitante. Os valores ótimos encontrados para cada controle estão representados na Tabela 4.

5

6

(a) Controle degrau concomitante

(b) Controle decrescente concomitante

Figura 1: Controles aplicados na primavera - cenário 2 Tabela 4: Valores ótimos mono-objetivo obtidos para a primavera

Tipo de controle	u_A	t_1	u_F	t_2	f_1	f_2	f_3	J
Sem controle	0	0	0	0	0	0	6357,81	6357, 81
Degrau Concomitante	0,9998	90	$0,\!4790$	90	4,44	102,1	3054,9	3161,44
Decrescente Concomitante	0,0434	52	$0,\!6829$	90	2,43	104,94	4710,5	4817,9

4.2 Verão

De forma análoga à estação anterior, a Figura 2 mostra o efeito da aplicação dos dois tipos de controle em comparação com o caso sem controle. O controle degrau concomitante mais uma vez sobressaiu. A Tabela 5 apresenta os resultados obtidos para as variáveis de decisão.

(a) Controle degrau concomitante (b) Controle decrescente concomitante

Figura 2: Controles aplicados no verão - cenário 2

Tabela 5: Valores ótimos mono-objetivo obtidos para o verão

Tipo de controle	u_A	t_1	u_F	t_2	f_1	f_2	f_3	J
Sem controle	0	0	0	0	0	0	6019,27	6019,27
Degrau Concomitante	0,4944	90	0,9998	90	1098,8	449,11	2727,8	4275,71
Decrescente Concomitante	0,0218	82	0,6587	90	0,97	97,63	4717,5	4816,1

5 Conclusões

Um modelo matemático entomológico foi utilizado para analisar o comportamento das populações imatura e adulta do mosquito *Aedes aegypti*, após a aplicação ótima de dois

tipos de controle com inseticidas e larvicidas, durante a primavera e o verão. Entre as duas estações, parece ser melhor realizar o controle durante a primavera, com o intuito de reduzir casos do verão. O controle decrescente concomitante é preferível já que sua ação é mais efetiva no início do processo, permitindo a redução de sua intensidade ao longo do tempo, obtendo melhores resultados do ponto de vista financeiro e social, mas também pensando na menor possibilidade de resistência do vetor aos inseticidas e larvicidas.

Agradecimentos

À FAPEMIG e ao CEFET-MG, pelo apoio financeiro e a todos os colaboradores.

Referências

- J. H. Arias, H. J. Martinez, L. S. Sepulveda, O. Vasilieva: Predator-Prey Model for Analysis of Aedes aegypti Population Dynamics in Cali, Colombia. International Journal of Pure and Applied Mathematics, 2015. doi: 10.12732/ijpam.v105i4.2
- [2] L. Barsante. Dependência entre pluviosidade e população de fêmeas Aedes aegypti grávidas descritas através de um sistema dinâmico não linear, Dissertação de Mestrado, Centro Federal de Educação Tecnológica de Minas Gerais, 2012.
- [3] L. Barsante, et al: A model to predict the population size of the dengue fever vector based on rainfall data. arXiv preprint arXiv:1409.7942, 2014.
- [4] F. Cordeiro, L. Barsante, B. S. Carvalho, R. T. N. Cardoso, Á. E. Eiras, J. L. Acebal: Towards Forecasting the Infestation Level by Dengue Vectors Based on Meteorological Forecast. To appear, 2015
- [5] S. T. R. Pinho, C. P. Ferreira, L. Esteva, F. R. Barreto, V. C. Morato e Silva, M. G. L. Teixeira: Modelling the dynamics of dengue real epidemics. *Phil Trans R Soc A* 368: 5679?5693, 2010. doi: 10.1098/rsta.2010.0278. pmid:21078642
- [6] World Health Organization. What is dengue?, 2017. http://www.who.int/denguecontrol/disease/en/.Cited31Mar2017
- [7] H. M. Yang and C. P. Ferreira: Assessing the effects of vector control on dengue transmission. Applied Mathematics and Computation, 2008. doi: 10.1016/j.amc.2007.08.046
- [8] H. M. Yang: Assessing the Influence of Quiescence Eggs on the Dynamics of Mosquito Aedes aegypti. Applied Mathematics, 5, 2696-2711, 2014. doi: 10.4236/am.2014.517257
- [9] H. M. Yang, J. L. Boldrini, A. C. Fassoni, L. F. S. Freitas, M. C. Gomez: Fitting the Incidence Data from the City of Campinas, Brazil, Based on Dengue Transmission Modellings Considering Time-Dependent Entomological Parameters. *PLOS ONE* 11(3): e0152186, 2016. doi: 10.1371/journal.pone.0152186