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Abstrat. A urrent issue in Computational Neurosiene is to develop models that desribe

the neuronal �ring aurately and with low omputational ost. The Hodgkin-Huxley model

ful�lls the �rst riteria but fails in the seond one. In order to handle it, there are other

simpler models, as the Integrate-and-�re. Both methods present deterministi approahes,

and in order to obtain more aurate results, we have onsidered the addition of Brownian

noise. We have obtained more aurate results and ompared them.

Key-words. Neurosiene. Numerial Methods. Hodgkin-Huxley model. Integrate-and-

Fire model. Stohasti Di�erential Equations.

1 Introdution

In 1952, in the paper A quantitative desription of Membrane Current and its appliation

to ondution and exitation in nerve [7℄, Hodgkin and Huxley presented a voltage-dependent

model for neuronal �ring as a nonlinear phenomenon. This model reeived their names and

it is very uselful beause it aptures biologial aspets, but it is di�ult to solve and presents

very sensitive parameters [12℄. Simpler and heaper models were developed posteriorly,

aiming to obtain, e.g., �ring rates [10℄. Considering simpliity and low omputational ost,

the Integrate-and-Fire (IF) model is the most e�ient among other models [9℄.

Both models approahes neuronal �ring deterministially. That is not aurate, beause

it's known that, e.g., ortial and spontanous ativity ells do not present this kind of

behavior [2,8℄. These irregularities are biologially aused by many fators and we represent

the sum of these irregularities in the model adding white noise on it [11℄.

We aim to obtain more aurate results for spike trains. We also aim to ompare HH

and IF models in relation to omputational ost and output probability distribution.
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2 The Hodgkin-Huxley model

The HHmodel desribes ation potenials through an analogy between the ell membrane

and a simple eletri iruit [5℄. It is the most omplete model so far. It onsiders a

seletively permeable ell membrane, ontaining protein hannels for Sodium and Potassium

ions. The opening and losing proess of these hannels ours stohastially, i.e., one an

not estimate deterministially if the hannels will be open or losed in a ertain instant of

time.

The mathematial model onsists of a paraboli PDE and three ODEs. The �rst

equation of the HH model shows how voltage varies in time and spae:

C
∂V

∂t
= µ

∂2V

∂x2
−

3
∑

i=1

gi(V − Ei) + Iext +R1;

The voltage rate, whih is multiplied by the membrane spei� apaitane C, is the sum

of the ioni urrents, the spatial term and input urrent Iext disturbed by an additive

noise R1. These ioni urrents are given by Kirhho�'s law, expressed as ondutane

times the onentration gradient for eah ion (voltage minus the Nernst potential). As we

have Sodium, Potassium and and leak hannels, the index i orresponds to eah of these,

respetively. The spatial variation is multiplied by a oe�ient of di�usion µ, responsible

for the spatial di�usion.

The other three ODEs model how the dimensionless gating variables vary in time. These

variables represent the probability of opening and losing of ativation gates, for Potassium

ion (m), and of ativation or inativation gates, for Sodium ion (h and n).

dm

dt
= (1−m)αm(V )−mβm(V );

dh

dt
= (1− h)αh(V )− hβh(V );

dn

dt
= (1− n)αn(V )− nβn(V ).

These variations are given by the onvex ombination of the gating variable by the gating

funtions, whih show how the probabilities of opening and losing vary aording to the

voltage.

Therefore, the HH model is formed by these four oupled and nonlinear equations. We

emphasize that in this paper we take µ = 0.

3 The Integrate-and-�re model

Despite the HHmodel being the most omplete model so far, it presents some disadvantages,

as disussed previously. The Integrate-and-Fire model aims to provide spike rates in a

ertain time interval only with the information that the neuron has reahed the ation

threshold. This model has the same deterministi features as the HH model, so we also

have added white noise to it [3, 11℄.
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The model onsists of one ODE that presents a di�erent dynamis ompared to the

HH model: the neuron reahes the prede�ned ation threshold ϑ, the membrane potential

returns to resting potential and the proess restarts [11℄.

τm
dv(t)

dt
= −(v(t)− EL) +RI(t) +R2, ∀t ∈ [0, T ], T ∈ N. (1)

The time variation is multiplied by a time onstant τm, determined by the model of one

ompartment apaitane and by the average ondutanes of Sodium and leaky hannels.

We also have the onentration gradient given by the subtration of the voltage by the

resting potential EL. In this model we also have a input urrent RI(t) disturbed by a

noise R2. Considering tf to be the instant of time that the threshold is reahed, we �nish

it onsidering v(tf ) = ϑ.

There are another two ways to perturb the IF model, but the one given by equation

(1) is the only that an be ompared diretly to the HH model. It ours beause in both

ases the noise is added in the input urrent.

4 Numerial Solution

The HH system and the IF dynami were disretized using �nite di�erene methods.

For the stohasti ases, we have used slightly di�erent methods from the orresponding

deterministi ones. The omputational experiments onsist of shooting a spike train in

order to verify if the addition of noise reprodues its features more preisely. For this

purpose, HH and IF models were used. All numerial experiments were implemented and

arried out in Matlabr R2012b version.

The noisy HH model was disretized using Euler-Maruyama(EM) [6℄.For values less

than∆t = 10−4
, the mean and the standard deviaton (SD) beome invariant. Furthermore,

the SD onverges to 7.92×10−4
. By way of example, we show a disretization with the EM

Method. The noise is given by dW(tn)=
√
∆tN(0, 1)n [6℄, where N(0,1) are independent

standard Gaussian random variables.

V n+1 = V n +∆t

[

Iext − gnNa − gnK − gnL
C

]

+ σ1dW (tn);

nn+1 = nn +∆tφ[αn(V )(1 − n)− βn(V )n];

mn+1 = mn +∆tφ[αm(V )(1−m)− βm(V )m];

hn+1 = hn +∆tφ[αh(V )(1− h)− βh(V )h].

The initial onditions and parameters are given by [5℄, [4℄ and [1℄.
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Table 1: Experimental parameters for HH model when µ = 0.

Parameter Meaning Value

C Membrane spei� apaitane 1 µ F cm−2

ENa, EK , ELeak Nernst potentials 50, -77, -54.4 mV

gNa, gNa, gNa Maximum ondutanes 120, 36, 0.3 mScm−2

Iext Input urrent 12 mV

m,n,h Gating variables 0.1, 0.4, 0.4

σ1 Intensity onstant 24
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Figure 1: Spike train with white noise through EM Method for the time interval of 100 ms.

By way of omparison to the HH model, here is the noisy IF disretization with the

EM Method [6, 11℄.

V n+1 = V n − ∆t

τm
((V n − EL)−RIext) + σ2dW (tn).

The initial onditions and parameters are given by [11℄.

Table 2: Experimental parameters for IF model.

Parameter Meaning Value

τm Time onstant 10 ms

EL Resting potential -65 mV

σ2 Intensity onstant 2
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Figure 2: Subthreshold dynami with white noise through EM Method for the time interval of

100 ms.

It an be observed that for both ases, the addition of noise has provided a more

aurate evolution of the �ring neuron, by apturing its irregularities. Besides every spike

having di�erent intervals interspikes two by two in the �rst ase for the HH and IF models,

the ation threshold is also diferent in a spike train (exept in the IF ase, beause the

threshold is �xed). The runtime for both models also was ompared. Using the omputer

proessor Intel(R) Core(TM i7 - 4790 CPU � 3.60 Hz) in a mahine with 16384340 kB of

memory, we have observed that the IF model an be more than twie as fast than the HH

model for this ase.

In order to analyse the output probability distribution for the ase where µ = 0, we
have made a Monte Carlo approah. It were realized 500 samples of spike trains, with

500 neuron �ring eah one, totalizing 250000 �rings. We expet that, for non-spontaneous

�rings, but with Gaussian noise input, the histogram an be well approximated by a

lognormal distribution [2, 11℄.
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Figure 3: ISI-histogram for HH model onsidering 500 random samples with 500 �ring eah.
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Figure 4: ISI-histogram for IF model onsidering 500 random samples with 500 �ring eah.

Table 3: Dispersion data for IF model.

Model Time step size Mean SD

HH 10−4
7.744 2.228

IF 10−4
11.886 7.659

Both ISI-histograms an be well aproximated by a lognormal distribution, and aording

to the dispersion measures we observe that the HH model is loser to a exponential

distribution, whih shows that spike trains under our omputational assumption are often

generated with a Poisson proess [11℄.

5 Conluding Remarks

The addition of standard Brownian Motion unertainty to the HH and IF models

provides more aurate results. This an be observed by the fat that the stohasti model

reprodues inherent shape irregularities in exitatory and inhibitory ortial ells, while

the deterministi model reprodues onstant �ring. One an also observe that the ISI-

histogram for the temporal ase an be well approximated by a lognormal distribution as

expeted for one soure of Gaussian noise.
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