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Abstra
t. A 
urrent issue in Computational Neuros
ien
e is to develop models that des
ribe

the neuronal �ring a

urately and with low 
omputational 
ost. The Hodgkin-Huxley model

ful�lls the �rst 
riteria but fails in the se
ond one. In order to handle it, there are other

simpler models, as the Integrate-and-�re. Both methods present deterministi
 approa
hes,

and in order to obtain more a

urate results, we have 
onsidered the addition of Brownian

noise. We have obtained more a

urate results and 
ompared them.
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1 Introdu
tion

In 1952, in the paper A quantitative des
ription of Membrane Current and its appli
ation

to 
ondu
tion and ex
itation in nerve [7℄, Hodgkin and Huxley presented a voltage-dependent

model for neuronal �ring as a nonlinear phenomenon. This model re
eived their names and

it is very uselful be
ause it 
aptures biologi
al aspe
ts, but it is di�
ult to solve and presents

very sensitive parameters [12℄. Simpler and 
heaper models were developed posteriorly,

aiming to obtain, e.g., �ring rates [10℄. Considering simpli
ity and low 
omputational 
ost,

the Integrate-and-Fire (IF) model is the most e�
ient among other models [9℄.

Both models approa
hes neuronal �ring deterministi
ally. That is not a

urate, be
ause

it's known that, e.g., 
orti
al and spontanous a
tivity 
ells do not present this kind of

behavior [2,8℄. These irregularities are biologi
ally 
aused by many fa
tors and we represent

the sum of these irregularities in the model adding white noise on it [11℄.

We aim to obtain more a

urate results for spike trains. We also aim to 
ompare HH

and IF models in relation to 
omputational 
ost and output probability distribution.
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2 The Hodgkin-Huxley model

The HHmodel des
ribes a
tion poten
ials through an analogy between the 
ell membrane

and a simple ele
tri
 
ir
uit [5℄. It is the most 
omplete model so far. It 
onsiders a

sele
tively permeable 
ell membrane, 
ontaining protein 
hannels for Sodium and Potassium

ions. The opening and 
losing pro
ess of these 
hannels o

urs sto
hasti
ally, i.e., one 
an

not estimate deterministi
ally if the 
hannels will be open or 
losed in a 
ertain instant of

time.

The mathemati
al model 
onsists of a paraboli
 PDE and three ODEs. The �rst

equation of the HH model shows how voltage varies in time and spa
e:

C
∂V

∂t
= µ

∂2V

∂x2
−

3
∑

i=1

gi(V − Ei) + Iext +R1;

The voltage rate, whi
h is multiplied by the membrane spe
i�
 
apa
itan
e C, is the sum

of the ioni
 
urrents, the spatial term and input 
urrent Iext disturbed by an addi
tive

noise R1. These ioni
 
urrents are given by Kir
hho�'s law, expressed as 
ondu
tan
e

times the 
on
entration gradient for ea
h ion (voltage minus the Nernst potential). As we

have Sodium, Potassium and and leak 
hannels, the index i 
orresponds to ea
h of these,

respe
tively. The spatial variation is multiplied by a 
oe�
ient of di�usion µ, responsible

for the spatial di�usion.

The other three ODEs model how the dimensionless gating variables vary in time. These

variables represent the probability of opening and 
losing of a
tivation gates, for Potassium

ion (m), and of a
tivation or ina
tivation gates, for Sodium ion (h and n).

dm

dt
= (1−m)αm(V )−mβm(V );

dh

dt
= (1− h)αh(V )− hβh(V );

dn

dt
= (1− n)αn(V )− nβn(V ).

These variations are given by the 
onvex 
ombination of the gating variable by the gating

fun
tions, whi
h show how the probabilities of opening and 
losing vary a

ording to the

voltage.

Therefore, the HH model is formed by these four 
oupled and nonlinear equations. We

emphasize that in this paper we take µ = 0.

3 The Integrate-and-�re model

Despite the HHmodel being the most 
omplete model so far, it presents some disadvantages,

as dis
ussed previously. The Integrate-and-Fire model aims to provide spike rates in a


ertain time interval only with the information that the neuron has rea
hed the a
tion

threshold. This model has the same deterministi
 features as the HH model, so we also

have added white noise to it [3, 11℄.
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The model 
onsists of one ODE that presents a di�erent dynami
s 
ompared to the

HH model: the neuron rea
hes the prede�ned a
tion threshold ϑ, the membrane potential

returns to resting potential and the pro
ess restarts [11℄.

τm
dv(t)

dt
= −(v(t)− EL) +RI(t) +R2, ∀t ∈ [0, T ], T ∈ N. (1)

The time variation is multiplied by a time 
onstant τm, determined by the model of one


ompartment 
apa
itan
e and by the average 
ondu
tan
es of Sodium and leaky 
hannels.

We also have the 
on
entration gradient given by the subtra
tion of the voltage by the

resting potential EL. In this model we also have a input 
urrent RI(t) disturbed by a

noise R2. Considering tf to be the instant of time that the threshold is rea
hed, we �nish

it 
onsidering v(tf ) = ϑ.

There are another two ways to perturb the IF model, but the one given by equation

(1) is the only that 
an be 
ompared dire
tly to the HH model. It o

urs be
ause in both


ases the noise is added in the input 
urrent.

4 Numeri
al Solution

The HH system and the IF dynami
 were dis
retized using �nite di�eren
e methods.

For the sto
hasti
 
ases, we have used slightly di�erent methods from the 
orresponding

deterministi
 ones. The 
omputational experiments 
onsist of shooting a spike train in

order to verify if the addition of noise reprodu
es its features more pre
isely. For this

purpose, HH and IF models were used. All numeri
al experiments were implemented and


arried out in Matlabr R2012b version.

The noisy HH model was dis
retized using Euler-Maruyama(EM) [6℄.For values less

than∆t = 10−4
, the mean and the standard deviaton (SD) be
ome invariant. Furthermore,

the SD 
onverges to 7.92×10−4
. By way of example, we show a dis
retization with the EM

Method. The noise is given by dW(tn)=
√
∆tN(0, 1)n [6℄, where N(0,1) are independent

standard Gaussian random variables.

V n+1 = V n +∆t

[

Iext − gnNa − gnK − gnL
C

]

+ σ1dW (tn);

nn+1 = nn +∆tφ[αn(V )(1 − n)− βn(V )n];

mn+1 = mn +∆tφ[αm(V )(1−m)− βm(V )m];

hn+1 = hn +∆tφ[αh(V )(1− h)− βh(V )h].

The initial 
onditions and parameters are given by [5℄, [4℄ and [1℄.
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Table 1: Experimental parameters for HH model when µ = 0.

Parameter Meaning Value

C Membrane spe
i�
 
apa
itan
e 1 µ F cm−2

ENa, EK , ELeak Nernst potentials 50, -77, -54.4 mV

gNa, gNa, gNa Maximum 
ondu
tan
es 120, 36, 0.3 mScm−2

Iext Input 
urrent 12 mV

m,n,h Gating variables 0.1, 0.4, 0.4

σ1 Intensity 
onstant 24
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Figure 1: Spike train with white noise through EM Method for the time interval of 100 ms.

By way of 
omparison to the HH model, here is the noisy IF dis
retization with the

EM Method [6, 11℄.

V n+1 = V n − ∆t

τm
((V n − EL)−RIext) + σ2dW (tn).

The initial 
onditions and parameters are given by [11℄.

Table 2: Experimental parameters for IF model.

Parameter Meaning Value

τm Time 
onstant 10 ms

EL Resting potential -65 mV

σ2 Intensity 
onstant 2
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Figure 2: Subthreshold dynami
 with white noise through EM Method for the time interval of

100 ms.

It 
an be observed that for both 
ases, the addition of noise has provided a more

a

urate evolution of the �ring neuron, by 
apturing its irregularities. Besides every spike

having di�erent intervals interspikes two by two in the �rst 
ase for the HH and IF models,

the a
tion threshold is also diferent in a spike train (ex
ept in the IF 
ase, be
ause the

threshold is �xed). The runtime for both models also was 
ompared. Using the 
omputer

pro
essor Intel(R) Core(TM i7 - 4790 CPU � 3.60 Hz) in a ma
hine with 16384340 kB of

memory, we have observed that the IF model 
an be more than twi
e as fast than the HH

model for this 
ase.

In order to analyse the output probability distribution for the 
ase where µ = 0, we
have made a Monte Carlo approa
h. It were realized 500 samples of spike trains, with

500 neuron �ring ea
h one, totalizing 250000 �rings. We expe
t that, for non-spontaneous

�rings, but with Gaussian noise input, the histogram 
an be well approximated by a

lognormal distribution [2, 11℄.
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Figure 3: ISI-histogram for HH model 
onsidering 500 random samples with 500 �ring ea
h.
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Figure 4: ISI-histogram for IF model 
onsidering 500 random samples with 500 �ring ea
h.

Table 3: Dispersion data for IF model.

Model Time step size Mean SD

HH 10−4
7.744 2.228

IF 10−4
11.886 7.659

Both ISI-histograms 
an be well aproximated by a lognormal distribution, and a

ording

to the dispersion measures we observe that the HH model is 
loser to a exponential

distribution, whi
h shows that spike trains under our 
omputational assumption are often

generated with a Poisson pro
ess [11℄.

5 Con
luding Remarks

The addition of standard Brownian Motion un
ertainty to the HH and IF models

provides more a

urate results. This 
an be observed by the fa
t that the sto
hasti
 model

reprodu
es inherent shape irregularities in ex
itatory and inhibitory 
orti
al 
ells, while

the deterministi
 model reprodu
es 
onstant �ring. One 
an also observe that the ISI-

histogram for the temporal 
ase 
an be well approximated by a lognormal distribution as

expe
ted for one sour
e of Gaussian noise.
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