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Abstract. The performance of a strongly conservative finite element formulation for cou-
pled Stokes-Darcy problems is discussed. The same pair of balanced H(div)-L2 approxima-
tion spaces is used for flow an pressure variables, in both sides. For Darcy’s flux, H(div)-
conforming spaces is the natural context. In the Stokes side, the discontinuity of tangential
flux components is treated by a penalization term, as in usual Discontinuous Galerkin meth-
ods. For incompressible fluids, this method naturally gives exact divergence-free velocity
fields, a property that few schemes can achieve. Furthermore, the coupling Stoke-Darcy
interface conditions is naturally enforced. The method is implemented using an object-
oriented computational environment, and a test problem is simulated to illustrate numerical
approximation properties, verifying errors and rates of convergence.
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1 Introduction

In this paper, the interest is on finite element approximations of coupled Stokes–Darcy
problem, which appear in considerable number of applications [1]. For instance, this is the
case of modeling the interaction of flows in wells and reservoirs, in fractured porous media,
commonly found in Petroleum Engineering, and between surface (rivers) and groundwater
(aquifer). Free flow channel confined by porous walls is also a feature of many of the
natural and industrial settings [2]. Other application is for self-compacting concrete flow
around reinforcing bars, where the reinforced bar domain is represented by a Darcy’s law
obtained by homogenization, while a Stokes flow is considered elsewhere [3].

There are several works in the literature dealing with coupled Stokes-Darcy problems,
and we refer to [4–6] for extensive bibliography review on this topic. Recently, it has
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regained relevance and is attracting new attention of numerical analysts, and improved
numerical methods have been proposed [7].

For coupled Stokes-Darcy problems, we adopt H(div)-conforming flux approximations
on both sides, a method that has been analyzed in [5, 8]. On Stokes’s part, the tangential
discontinuity of vector functions in the H(div) subspaces is treated by a penalization term,
as in usual Discontinuous Galerkin methods. For Darcy’s flow, this is a natural context,
and a classic mixed formulation is applied [9]. In order to fit the fluids between the two
domains, experimental conditions presented in [10] shall be considered, relating tangential
component of fluid velocity and shear stress on Stokes-Darcy interface.

As emphasized in [8], the most important property of this method is its capability
of solving strongly the divergence-free equation, a task that few schemes can accomplish.
Furthermore, the same pair of approximation spaces for velocity and pressure represen-
tations can be used in both flow regions, a characteristic not shown by most methods
designed for the simulation of coupled Stokes-Darcy problems. Another advantage is that
the Beavers–Joseph–Saffman condition is easier to enforce, since the bi-linear form only
involves the tangential component of the velocity over the Stokes-Darcy interface.

A object oriented programming environment, called NeoPZ [11], was used for the com-
putational implementation of all the presented methods. Developed at LabMeC (Labora-
tory of Computational Mechanics), at the State University of Campinas, Brazil, it can be
freely downloaded from http://github.com/labmec/neopz.

The organization of the present paper starts by setting the main notation in Section
2. Next, the coupled Stokes-Darcy problem is considered in Section 3, and numerical
results are shown. In all the simulations, Raviart-Thomas [12] space configuration based
on quadrilateral elements are used. Finally, in Section 4, we present the conclusions.

2 Notation

Let Ω ⊂ R2 be an open polygonal domain with border ∂Ω, and unit normal ~n exterior to
Ω. Shape-regular partitions T = {Ωe, e = 1, · · · , nel} of Ω, formed by affine quadrilateral
elements, shall be considered. The set Γ formed by all element edges E is called the mesh
skeleton, and Γint = {E ∈ Γ : E ⊂ Ω} denotes the set of internal edges. To each interior
edge E, once and for all, a unit normal vector ~nE and a tangent vector ~τE are associated so
that {~nE , ~τE} form a right-hand coordinate system. If E is a boundary edge, then ~nE = ~n
is the unit normal exterior to Ω. Over interfaces E ∈ Γint between two elements, Ω1 and
Ω2, jump and average operators of a function v are formally defined as

JvKE = v1|E − v2|E , 〈v〉E =
1

2
(v1|E + v2|E) ,

where vi = v|Ωi . For boundary edges E ⊂ ∂Ω, jump and average are function traces over
E.

Local approximations shall be defined in terms of one of the following polynomial
spaces:

• Qk: scalar polynomials of maximum degree k in each variable.
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• Qm,n: scalar polynomials of maximum degree m in x, and n in y.

Vector spaces
−→
V are piece-wise defined over the elements Ωe ∈ T in terms of local

polynomial approximations
−→
V e. It is here defined:

−→
V = {~ϕ ∈ H(div,Ω); ~ϕ|Ωe ∈

−→
V e}.

It is clear that for E ∈ Γint,

J~ϕKE = J(~ϕ · ~τe)KE~τE if ~ϕ ∈
−→
V ,

since J~ϕ · ~nKE = 0 for H(div)-conforming vector fields.
The scalar approximation spaces for the pressure are also piece-wise defined in terms

of local polynomial spaces Ψe. Globally, the spaces may be continuous or discontinuous

Ψ = {ϕ ∈ L2
0(Ω); ϕ|Ωe ∈ Ψe},

where L2
0(Ω) = {ϕ ∈ L2(Ω);

∫
Ω ϕ dΩ = 0}.

3 Coupled Stokes-Darcy model

We present in this section a finite element formulation for the coupled model considering
a Darcy’s flow in a region ΩD and a Stokes flow in a region ΩS . Both regions form
the computational domain Ω = ΩD ∪ ΩS , and are assumed to be polygonal, sharing the
interface ΓSD = ∂ΩD ∩ ∂ΩS . Let ~nSD be unit normal vectors to the edges in ΓSD,
pointing from ΩS to ΩD, and let ~τSD be the associated positive oriented tangent vectors.
For convenience, restrictions of functions to each of the flow domains are denoted by
vS = v|ΩS , and vD = v|ΩS .

The coupled Stokes-Darcy model problem consists in finding ~u and p such that:

−∇ · T(~u, p) = ~f in ΩS ,

µK−1 ~u+∇p = 0 em ΩD,

∇. ~u = f in Ω,

where K is the permeability tensor, ~f ∈ [L2(ΩS)]2, and f ∈ L2(Ω), with f |ΩS = 0. The
boundary conditions for this coupled problem are:

~u = 0 in ∂ΩS \ ΓSD, ~u . ~n = 0 in ∂ΩD \ ΓSD.

Furthermore, the following conditions should be enforced at the interface ΓSD:

• Flux continuity: ~uS · ~nSD = ~uD · ~n.

• Balance of normal forces: pS − 2µ [D(~uS)~nSD] · ~nSD = pD.

• Beavers-Joseph-Saffman (BJS) condition [10]: ~uS · ~τSD = −2G [D(~uS)~nSD] · ~nSD,
where G > 0 is an empirical coefficient.
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3.1 Weak formulations for the Stokes-Darcy problem

The main goal here is to show how the well known capacity of divergence-conforming
spaces for flux representation in mixed methods for Darcy’s flows can be combined with a
Stokes flow scheme, in order to design different stable and accurate weak formulations for
the coupled Stokes-Darcy problem.

Let TS and TD be shape-regular partitions of ΩS and ΩD, respectively, and assume
they match along the interface ΓSD. This means that T = TS ∪ TD form a partition of
ΩS ∪ ΓSD ∪ΩS . Given pressure and velocity approximation spaces Ψ and

−→
V based on the

partition T , the mixed formulation searches for a pair of functions {~u, p} ∈
−→
V × Ψ, such

that, for ∀ {~ϕ, ϕ} ∈
−→
V ×Ψ we have:

aSD(~u, ~ϕ) + bSD(~ϕ, p) =

∫
ΩS

~f · ~ϕSdΩS + (BC), (1)

bSD(~u, ϕ) = −
∫

ΩD

f ϕDdΩD. (2)

The bi-linear forms for the coupled problem can expressed as

aSD(~u, ~ϕ) = aS(~uS , ~ϕS) +
µ

G

∫
ΓSD

(~uS · ~τSD) (~ϕS · ~τSD) ds+

∫
ΩD

~uD · ~ϕD dΩD, (3)

bSD(~u, ϕ) = −bS(~uS , ϕS)−
∫

ΩD

∇ · ~uD ϕD dΩD, (4)

aS(~u, ~ϕ) = 2µ

nel∑
e=1

(∫
Ωe

D(~ϕ) ·D(~u) dΩe

)
− 2µ

∑
E∈ΓS

{∫
E
〈D(~u)~nE · ~τE〉J~ϕ · ~τEK ds

− β

∫
E
〈D(~ϕ)~nE · ~τE〉 · J~u · ~τEK ds

}
+
∑
E∈ΓS

γE
|E|

∫
E
J~u · ~τEK · J~ϕ · ~τEK ds, (5)

bS(~u, ϕ) = −
∫

ΩS

∇ · ~uϕdΩS . (6)

In relation to aS(~uS , ~ϕS) and bS(~uS , ~ϕS), the integrals are restricted to the elements
Ωe ∈ TS and to the edges in the skeleton ΓS that are not included in the interface ΓSD. The
last term in equation (5) is the penalization required to treat the tangential discontinuity
of the Stokes velocity, where γE = γ0k

2, k being the polynomial order chosen for the
approximation of the velocity. For a symmetric formulation, the parameter β = −1.

The next example verifies the implementation of this methodology of this scheme ap-
plied to a Stokes-Darcy problem with known exact solution.

Verification test

The following problem was proposed by [13]. The region is a rectangle where the
Stokes domain is ΩS = (0.0, π) × ([0.0, 1.0), and the Darcy domain is ΩD = (0.0, π) ×
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(−1.0, 0.0), with interface ΓSD = {0 < x < π, y = 0}. Viscosity coefficient µ = 1, constant
permeability K = I, and coefficient for the BJS interface condition µ∗ = 1 are adopted.
For this problem, the exact velocity and pressure fields are:

~uS =

(
v′(y) cosx
v(y) sinx

)
, pS = sinx sin y, where v(y) =

1

π2
sin2(πy)− 2,

~uD =

(
(e−y − ey) cosx
−(e−y + ey) sinx

)
, pD = (−e−y + ey) sinx.

The forcing functions g and ~f are obtained from these exact solutions.
Approximations ~uh ∈

−→
V h, ph ∈ Ψh are computed using uniform rectangular meshes Th

with mesh sizes hxi = π/N , and hyi = 2/N , for N = 2j , j = 2, · · · , 6, and H(div) − L2

balanced spaces
−→
V Ψ and 3. For this verification test, symmetric formulation with balanced

Raviart-Thomas space configuration
−→
Qdiv

RT (k) Qd
k , for which

−→
V e = Qk+1,k × Qk,k+1 and

Ψe = Qk. The penalization parameter γ0 = 12 is considered on the Stokes part. Error
analysis for the application of these spaces in Darcy’s problems with smooth solutions gives
L2-rates of order k+1 for velocity and pressure [12]. For Stokes flows, the predicted orders
are k + 1 for velocity, and k for pressure [14].
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Figure 1: Stokes-Darcy problem: convergence history for ~u (left side), p (right side), on
ΩS (top side) and on ΩD (bottom side), using spaces

−→
Qdiv

RT (k) Qd
k , k = 1, 2 and 3, with

symmetric formulation on ΩS .

The results are represented graphically in Fig. 1, where the predicted errors in Darcy’s
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region are achieved. The results for the Stokes flow are also consistent, corresponding to
the predicted order k + 1 for velocity, and rates close to order k + 1 for pressure, which is
higher than the predicted order k.

4 Conclusions

The special interest on the method using balanced H(div)−L2 space configurations for
the simulation of coupled Stokes-Darcy problem comes mainly from its important capability
of solving strongly the divergence-free equation. Furthermore, for coupled flows, the same
pair of approximation spaces can be used in both Stokes and Darcy’s regions, a convenient
characteristic not shown by most methods designed for such problems.

The application of H(div)-conforming spaces revealed to be an efficient form of approx-
imating velocity fields in coupled Stokes-Darcy equations, leading to optimal convergence
rates, even when velocity and pressure spaces are defined by polynomials of the same
degree, as in the schemes using

−→
Qd

RT (k) Qd
k and

−→
Qdiv

RT (k) Qd
k space configurations based

on quadrilateral meshes. Furthermore, the former one has the additional advantage of
being strongly conservative, and to allow natural enforcement of Beavers-Joseph-Saffman
interface condition in coupled flows, since the bi-linear form only involves the tangential
component of the velocity over the Stokes-Darcy interface.
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