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Abstract. Mathematical models aim to help predictions and possible contention of disease
spread, in particular vector-borne diseases. We have been working with a reaction-diffusion
model that considers spatial movement of humans and vectors, with local contact trans-
mission of Zika virus. Control measures, namely vaccination, human and vector contact
reduction and vector elimination, are introduced in order to characterize an optimal strat-
egy that minimizes the costs associated with infections and interventions. The optimal
control characterization for each control variable is obtained in terms of state and adjoint
equations. Numerical simulations are carried out using data for the initial 2015 Zika out-
break in the state of Rio Grande do Norte in Brazil. Several scenarios are simulated and
analyzed in terms of number of new infections and costs, showing that the optimal control
application is successful.
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merical methods.

1 Introduction

Mathematical models have been widely used in epidemiology, including vector-borne
diseases, in order to obtain a better understanding that can help prediction and interven-
tion. Dengue, Chikungunya, Zika, are examples of vector-borne diseases with worldwide
concern, as they are transmitted by the same mosquitoes, Aedes aegypti and Aedes al-
bopictus. Also, Zika virus can be transmitted directly between human, through sexual
relations, for example, and is associated with neurological conditions in newborn babies
from infected mothers [10]. In an ongoing project, we have been working in the appli-
cation of optimal control of a hypothetical vaccine in a reaction-diffusion vector-borne
model applied to Zika virus [6]. This partial differential equation (PDE) model accounts
for spatial spread of the virus in humans and mosquitoes. Although the application of
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vaccination alone is capable of lowering the number of infections in a Zika outbreak, it
is also important to consider other kinds of control measures, such as human and vector
contact reduction, and mosquito elimination. In the present work, we apply these inter-
vention measures by extending the model studied in our previous work [6], using numerical
simulations and optimal control theory to obtain a strategy that gives a minimum cost
associated to adopted measures and resulting infections.

2 Mathematical modeling and optimal control

We developed a reaction-diffusion PDE system model to study the spread of Zika virus,
using SIR (Susceptible – Infected – Removed) dynamics for humans and SI (Susceptible
– Infected) for mosquitoes (vectors). The model consists of five compartments: Suscep-
tible (S), Infected (I) and Immune (R) humans, and Susceptible (Sv) and Infected (Iv)
mosquitoes/vectors [3]. The word “infected” is used to denote that a human or a vector in
its corresponding class is able to transmit the virus. All populations are able to spatially
move, which is described in the model by diffusion. The control rates u = (u1, u2, u3, u4)
are defined as follows: u1 is vaccination, u2 is vector contact reduction in humans, such
as use of repellents, u3 is human contact reduction, as prophylaxis, and u4 is vector elimi-
nation, by use of insecticide and elimination of breeding sites. A flow chart for the model
is shown in Figure 1. Due to the studied periods the model does not include birth and
death of human population, but logistic growth is considered for vectors.

S I

R

Sv Iv

u1S

(1 − u2)βSIv

(1 − u3)βdSI

(1 − u2)βvSvI (1 + γ2u4)µvIv

−γ1u4Sv

δI

Figure 1: Flow chart for model (1). Squares denote humans and circles mosquitoes. S, I,
R denote susceptible, infected, and immune, respectively

The state system is given by (1) in Q = Ω× (0, T ), and a summary of its parameters
and meanings can be found in Table 1. All populations S, I, R, Sv, Iv and the controls
u1, u2, u3, u4 are functions of space x = (x, y) and time t ∈ (0, T ), with spatial domain
Ω ⊂ R2 and smooth boundary ∂Ω. Boundary conditions are no flux, with derivatives in
the outward normal direction n equal to zero [7]. Initial conditions S0, I0, R0, Sv0 and
Iv0 are properly defined in each situation of interest. In the model, α, αI and αv are
diffusion coefficients, β, βd and βv are vector to human, human to human, and human to
vector transmission rates, δ is the disease recovery rate, rv is the mosquito birth rate, κv
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is the mosquito carrying capacity, µv is the mosquito death rate, γ1 and γ2 are mosquito
mortality rates associated to control u4.

∂S

∂t
−∇ · (α∇S) = −(1− u2)βSIv − (1− u3)βdSI − u1S,

∂I

∂t
−∇ · (αI∇I) = (1− u2)βSIv + (1− u3)βdSI − δI,

∂R

∂t
−∇ · (α∇R) = u1S + δI,

∂Sv
∂t
−∇ · (αv∇Sv) = −(1− u2)βvSvI + (1− u4)rv (Sv + Iv)

(
1− Sv + Iv

κv

)
− γ1u4Sv,

∂Iv
∂t
−∇ · (αv∇Iv) = (1− u2)βvSvI − (1 + γ2u4)µvIv, in Q,

S(x, 0) = S0, I(x, 0) = I0, R(x, 0) = R0, Sv(x, 0) = Sv0, Iv(x, 0) = Iv0, in Ω,

∂S

∂n
= 0,

∂I

∂n
= 0,

∂R

∂n
= 0,

∂Sv
∂n

= 0,
∂Iv
∂n

= 0, in ∂Ω× (0, T ).

(1)

Our goal is to minimize the costs associated to infected humans and mosquitoes, and
to all controls during a time interval. Therefore, considering the state system (1) as a
constraint, we wish to minimize the cost objective functional given by:

J(u) =

∫
Q

(
A1I +A2Iv + (B1u1 +B2u2 +B3u3)S +B4u4(Sv + Iv) +

4∑
i=1

Ciu
2
i

)
dxdt, (2)

where A1, A2, B1, B2, B3, B4, C1, C2, C3, C4, are constant weights representing costs.
A1 are A2 are related to costs of infected humans and mosquitoes, respectively; Bi are
related to ui application costs; and Ci are related to ui nonlinear logistic and production
costs of the controls themselves, i = 1, . . . , 4, respectively.

All controls are bounded, non-negative and belong to L2(Q). It is possible to show
that, in the appropriate weak sense, a solution of system (1) exists and is unique, as well
as a solution for the optimal control problem for a sufficiently small time [5]. Solutions
of the optimal control problem are obtained by solving an optimality system consisting of
the state PDEs, adjoint PDEs (in the adjoint variables λ1, λ2, λ3, λ4, λ5), and a character-
ization of the optimal control. After a careful derivation procedure very similar to that
performed in [4, 6, 8], the optimal control characterizations are given by:

u∗1 = min

(
u1max,max

(
0,

(λ1 − λ3 −B1)S
∗

2C1

))
.

u∗2 = min

(
u2max,max

(
0,

(β(−λ1 + λ2)I
∗
v −B2)S

∗ + βv(−λ4 + λ5)S
∗
vI

∗

2C2

))
.

u∗3 = min

(
u3max,max

(
0,

(βd(−λ1 + λ2)I
∗ −B3)S

∗

2C3

))
.

u∗4 = min

(
u4max,max

(
0,

(rv (1− (S∗
v + I∗v ) /κv)λ4 −B4)(S

∗
v + I∗v ) + γ1λ4S

∗
v + γ2µvλ5I

∗
v

2C4

))
.

(3)

Where umax = (u1max, u2max, u3max, u4max) are upper bounds on the controls, the adjoint
variables λ1, λ2, λ3, λ4, λ5 are obtained by solving the adjoint system, and the ∗ superscript
denotes optimality.
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3 Numerical Simulations

We use MATLAB (version R2015a) PDE toolbox to obtain numerical simulations for
the optimality system, combined with the Forward-Backward Sweep, an iterative method
that updates the state and adjoint systems, and the controls using characterization (3)
until convergence is reached [4]. We based our simulations in the initial 2015 Zika epidemic
in Rio Grande do Norte state, for which there is available data [9]. Parameter estimates
were obtained from literature [1, 2], estimated, or assumed. Transmission rates β and βv
were estimated using a least squares approach, in order to find parameters for model (1)
that produce results close to data. Cost weights related to controls were assumed based
on real life costs. All parameters values are shown in Table 1.

Table 1: Parameters with values used in simulations

Value Unit Value Unit

β 1.28× 10−5 1/(mosq./km2days) γ2 0.1 1/days
βv 1.55× 10−2 1/(hum./km2days) A1 66.67 ($/hum.)/days
βd 7.81× 10−5 1/(hum./km2days) A2 2.38 ($/mosq.)/days
1/δ 15 days B1 175 $/hum.
1/rv 14 days B2 1 ($/hum.)/days
1/µv 14 days B3 0.1 ($/hum.)/days
κv 321.4 mosq./km2 B4 0.02 ($/mosq.)/days
α 5 km2/days C1 1000 $/(km2/days)
αI 5 km2/days C2 10 ($/km2)/days
αv 0.3 km2/days C3 10 ($/km2)/days
γ1 0.1 1/days C4 500 ($/km2)/days

Table 2: Optimal control results

u = 0 u = umax u = u∗

Total incidence 4.5238× 105 3.8691× 104 1.0256× 105

J(u) 6.2397× 108 1.0731× 109 2.0410× 108

We considered a final time of 140 days, corresponding to available data. Several scenar-
ios were considered, but we show graphical results for only one of them, with all optimal
controls starting to be applied 35 days after the beginning of the simulation. Plots for
infected humans are in Figure 2, and for all controls in Figure 3, at selected times. Inte-
grating the solutions over space, in Figure 4 we have plots representing the total number
of each population and control over time. In order to assess the efficacy of the optimal
control, in Table 2 we show the total incidence, or number of new cases, and the cost
J(u) for simulations without control (u = 0), with constant controls at upper bounds
(u = umax), and with optimal control (u = u∗). The cost is lowest at the optimal control,
as expected, and highest with controls at the upper bounds. Also, the incidence lowers as
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Figure 2: Plots of infected humans at selected times. Each plot has a different scale.
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Figure 3: Plots of optimal controls at selected times. Each plot has a different scale.
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Figure 4: Integrals of state solutions and optimal controls over space.

the controls are applied. Constant controls at the upper bounds result in less incidence,
but at a higher cost, almost double the optimal cost. Although this could be a useful
strategy, it may not be feasible due to cost limitations.

In Figure 2 we can see the spatial spread of the disease, starting in three small areas
and occupying most part of the spatial domain in 140 days. In Figure 3 we can see that
all controls are applied in the regions where there are most infected humans, and as time
passes, less control is being applied. In Figure 4 we can see that the application of the
controls highly reduces the number of infected humans and mosquitoes over time.

4 Conclusions

The applied controls have brought about significant reductions in the number of new
infections and overall cost, showing a successful application of the optimal control strate-
gies. The numerical simulations performed were able to assess different realistic scenarios,
using real data from Rio Grande do Norte state in the 2015 initial Zika outbreak. Other
scenarios could be explored, applying only some of the control measures in different com-
binations. This work could help public policy decisions in order to implement efficient
control measures in a Zika virus outbreak, or even other vector-borne diseases, such as
dengue, malaria and yellow fever, with small modifications in the model.
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