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A Proportional, Integral and Derivative controller with Ziegler-Nichols tuning for the Van
de Vusse reactor, whose circuit includes a fuzzy rule-based system of interval type-2, is
compared with the classic control. In the nonlinear process with inverse response of the Van
de Vusse reactor, it is assumed that it is perfectly agitated and is operating in isothermal
and isochoric conditions with constant reaction. The mathematical model that describes
the reaction is given by a nonlinear system of ordinary differential equations which, by the
Laplace transform method, is associated with a second order transfer function. Simulations
built on Simulink R© show the efficacy of the interval type-2 fuzzy control strategy, with
better performance in terms of delay and overshoot compared to the classic control.
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1 Introduction

Chemical reactors are one of the most important components of the chemical industry.
A major problem in the chemical industry is that it is only possible to obtain the desired
product from a reaction to prevent parallel reactions from occurring, so that the reaction
obtained prevents parallel reactions from occurring, and the reaction yields its maximum.
For this purpose, a way has been created to optimize processes through controllers, among
which, the most widely used in the last two decades, is the Proportional, Integral and
Derivative Control (PID).

The standard PID controller is also known as the three-term controller, whose transfer
function is given by Equation (1)

H(s) = kP + kI
1

s
+ kDs = kP

(
1 +

1

TIs
+ TDs

)
(1)
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where kP is the proporcional gain, kI is the integral gain and kD is the derivative gain, TI

is the constant time of the integral, and TD is the constant time of the derivative [1].

Van de Vusse reactor is a system with inverse response that occurs when the initial
response of the output of the process is in the opposite direction of the steady state value.
This reactor is isothermal, that is, of constant temperature. The reactor volume is also
considered constant and the feed stream contains only the A component. The Van de
Vusse reaction scheme consists of the irreversible reactions as in Equation (2):

A
k1
−→ B

k2
−→ C︸ ︷︷ ︸

(R1)

2 A
k3
−→ D︸ ︷︷ ︸
(R2)

(2)

where A is the ciclopentadieno reagent, B, ciclopentenol is the desire product of the
reaction. Due to the strong reactivity of the reagents A and B, they produce an undesired
product, dicyclopentadiene, D, and a consecutive product, cyclopentanediol, C. The

other components are: k1, constant rate reaction of A
k1
−→ B in (R1), k2 a constant

rate of the reaction B
k1
−→ C in (R1), k3 is the constant rare of reaction of (R2). The

reactor is perfectly agitated and is operating under isothermal and isochoric conditions
with constant reaction. An illustration of the reactor is shown in Figure 1, where CA0

is
the initial concentration of A, CA is the concentration of A, CB is the concentration of B,
F the density, and V the volume.

Figure 1: Illustration of the Van de Vusse reactor [2].

The objective of this research is to establish, from the dynamic model of the Van de
Vusse [3] reactor, a control that includes a Fuzzy Rule-Based System (FRBS) of interval
type-2 and compare it to the conventional PID control type. This controller is constructed
from an FRBS in which the fuzzification is done through Mamdani’s inference method on
interval type-2 fuzzy sets [4], and the defuzzification is the generalized centroid method,
obtained by the algorithm of Karnik and Mendel [5].

Simulations are done in Simulink R© software where PIDs are compared in terms of
delay and overshoot indexes.

The paper is divided into five sections: Section 1 is the introduction; In Section 2
the transfer function of the Van de Vusse reactor is shown; in Section 3 a brief review of
the basic concepts of fuzzy sets type-2 is made; in Section 4 the simulation of the classic
PID compared with the controller that has FRBS of interval type-2 is simulated. Finally,
Section 5 summarizes the conclusion.
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2 Van de Vusse Transfer Function

The initial concentration considered is CA0
= 10gmoll−1 and the volume V constant.

Considering the equation of material balance and the fact that the volume is constant, we
get the relation described in Equation (3)

d(V ρ)

dt
= F0ρ− Fρ, (3)

where F0 is the initial density and ρ could take values of the concentrations CA, CB, CC ,

and CD. Let us suppose that F = F0, that is, a constant density. Denoting
F

V
= G, the

Equation (3) appplied to each concentration [6], yields in the system of ordinary equations
of Equation (4):

dCA

dt
= G(CA0

−CA)− k1CA − k3C
2
A,

dCB

dt
= −GCB + k1CA − k2CB ,

dCC

dt
= −GCC + k2CB , (4)

dCD

dt
= −GCD +

1

2
k3C

2
A.

The formation rate, rA, in moll−1 of the component A is given by rA = −k1CA−k3C
2
A, and

the formation rate, rb, in moll−1 of the component B is rB = k1CA − k2CB . Determining
the state point of the first two equations of Equation (4), we obtain the expressions given
in Equation (5)

CAs
=

−k1 −Gs +
√

(k1 +Gs)
2 + 4k3GsCA0

2k3
and CBs

=
k1CAs

Gs + k2
, (5)

where Gs =
Fs

V
=

F0

V
. The nonlinear system o f Equation (4) can be approximated by

the linear system in the matrix form given by Equation (6)

ẋ = Px+Qu, y = Rx+ Su, (6)

where the state variable, x =

[
CA − CAs

CB − CBs
,

]
, the input variable, u = G−Gs, and the output

variable, y = CB −CBs
. Considering φ1(CA, CB , G) = dCA

dt
and φ2(CA, CB , G) = dCB

dt
, the

entries, pij, of the matrix P , and the entries, qij, of the matrix Q of the linear system (6)
are calculated in Equation (7) as

pi1 =
∂φi

dCA
(CAs

, CBs
, Gs)

pi2 =
∂φi

dCB
(CAs

, CBs
, Gs) (7)

qi1 =
∂φi

dG
(CAs

, CBs
, Gs),
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for i = 1, 2. As a consequence, we obtain Equation (8)

P =

[
−Gs − k1 − 2k3CAs

0
k1 Gs − k2

]
, Q =

[
CA0

− CAs

−CBs

]
,

R = [0 1] and S = 0. (8)

The values of the constants for the reaction (R1)-(R2) considered in the simulation are
k1 = 0.83 min−1, k2 = 1.66 min−1 and k3 = 0.166 moll−1. The values of the steady states
CAs

= 3g mol l−1, CBs
= 1.117gmol l−1, and G = 0.5714 min−1. All these values extracted

from the literature [2,3,7]. Therefore, the matrix P and Q are numerically represented by
the Equation (9)

P =

[
−2.4 0
0.83 −2.23

]
and Q =

[
7

−1.117

]
. (9)

Denoting X(s), Y (s), and U(s) the Laplace transforms [8] of x(t), y(t), and u(t), respec-
tively, then the linear system (6), becomes Equation (10)

(sI − P )X(s) = QU(s), Y (s) = RX(s). (10)

Consequently, we have Y (s) expressed as in Equation (11)

Y (s) =
(
R(sI − P )−1Q

)
U(s). (11)

Using the numerical matrix P and Q (9), the transfence function [8] of the model is given
by the expression of Equation (12)

Y (s)

U(s)
=

−1.117s + 3.129

s2 + 4.63s + 5.352
. (12)

The transference function in Equation (12) for the error control of the Van de Vusse
reactor, is used in the simulations of Section 4.

3 Interval Type-2 Fuzzy Sets

The fuzzy sets of interval type-2 are an extension of the classical concept of fuzzy
sets of type-1. In general, a fuzzy set of type-2, Ã, is the graphic of a membership
function µ

Ã
: X × [0, 1] → [0, 1]. A fuzzy set of type-2 that verifies µA(x, u) = 1 for

all (x, u) ∈ X × [0, 1] is denominated as interval fuzzy set of type-2 and it is totally
determine for its footprint of uncertain [9]. A Fuzzy Rule-Based System (FRBS for short)
of interval type-2 is an inference system that has at least one interval type-2 fuzzy set
as an antecedent or as a consequent in the fuzzy inference [5]. The inference method used
in this research is the Mamdani’s method for interval type-2 fuzzy set [10].
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4 Comparison of PID controllers

In this section the controller PID, classic and interval type-2 are compared. The Van de
Vusse reactor’s transfer function (12) is used to create a circuit that describes the control
process, built through the Simulink R© software. The input function of the circuit is the
step function with of height Gs. At the end of the circuit, the output value o is subtracted
to the input value, calculating in that way the error of the control process. This error has
a gain, kP = 0.2, which is proportional to the error itself. At the same time, the derivative
of the error is calculated, which has as a gain TD = 0.95, proportional to the rate of the
error. Finally, the integral of the error is added with a proportional parameter TI = 0.23.
These parameters are extracted from the literature [2, 3, 7]. The total calculation value is
the input for the transfer function, that represents the reactor in the process, finalizing
with the output of the process. The circuit built in the Simulink environment is shown in
Figure 2.

Figure 2: PID circuit controller in Simulink. The mathematical used in the control are
extracted from the Simulink library. The “mask” for the transference function of the
reactor is the same as the Figure 1.

In the controller that has the FRBS of interval type-2, the error, e, and the derivative
of the error, e′, enter in the control system through the inference of interval type-2, and
the fuzzified value is add to the integral error value, adjusted by the same parameter TI .
The FRBS of interval type-2, is applied through a toolbox elaborated by Castillo [10].

The fuzzy set interval type-2, linguistic component of the input, are shown Figure 3
(a). The FRBS output has three linguistic components N (negative), P (positive) e Z
(zero), which footprint of uncertainty are shown on the left of Figure 3 (b).

The established rules for the FRBS of interval type-2 are shown in Table 1.

Table 1: The rules for the FBRS of interval type-2.
❍
❍

❍
❍
❍
❍

e

e′

N P

N N Z

P Z P

The stability of the outputs of these values can be visually compared with the classic
PID, and confirmed numerically by Table 2.
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(a) Footprints of uncertainty of the error and error’s derivative. (b) Footprint of uncertain of the
FRBS’s output.

Figure 3: Input and output of the FRBS of type-2.

The band obtained from the defuzzification generated by the inference method of
interval type-2 is shown together with the PID controller in Figure 4.

Figure 4: The PID controller and the type-2 band in time.

The numerical results allow a comparison in terms of two indexes:

• the number td, time delay that is the time necessary to the response get next to 50%
of the steady state;

• the number Mpt which represents the overshoot corresponding to time tp; the lesser
the values Mpt and tp, the faster the steady state is reached.

The comparative data is shown in Table 2, where the first and third columns are expressed
in minutes.
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Table 2: Comparative table of the controllers.
td Mpt tp

Interval type-2 PID 2 0.5791 5.3

Classic PID 2.6 0.6107 6.1

5 Conclusion

A Proportional, Integral, and Derivative classic controller, attuned with Ziegler-Nichols
parameters, is compared with a same type of controller using a Fuzzy Based-Rule System
of interval type-2. The fuzzy controller of interval type-2 proved to be more efficient than
the classical controller in the most important aspects of the output control behavior: the
delay and the overshoot times. Simulations built in Simulink R© are developed in order to
obtain the comparative numbers and graphics of the output control.
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