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Abstract. In this paper, we use the methodology for evaluation of the inverse Laplace
transform, proposed by M. N. Berberan-Santos, to show that the three-parameter Mittag-
Leffler function has an integral representation on the positive real axis. Some of integrals
are also presented.
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Introduction

The Mittag-Leffler function, introduced in 1902 by M. G. MittagLeffler [16], is impor-
tant in many fields and some applications can be found, for example, in: description of
the anomalous dielectric properties, probability theory, statistics, viscoelasticity, random
walks and dynamical systems [6–8, 11, 14, 18, 19]. Successively, generalizations of Mittag-
Leffler function were proposed [20]. These functions play fundamental role in arbitrary
order calculus, popularly known as fractional calculus [10,13,15], as well as the exponential
function play in integer order calculus.

The classical Laplace transform is one of the most widely tools used in the literature for
solving integral equations and ordinary or partial differential equations, involving integer
or fractional order derivatives [1, 5, 21, 24]. It is also used in many others applications
such as electrical circuit solving and signal processing [12, 23]. In general, the Laplace
inversion is done numerically due to the impossibility of the exact inversion by means of
an integration on the complex plane [4].

M. N. Berberan-Santos [2] proposed a new methodology for evaluation of the numerical
inverse Laplace transform, without using integration on the complex plane, which was
published in 2005, and its methodology was used recently, for instance, to discuss the
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luminescence decay of inorganic solids [22], and to obtain an integral representation of
Mittag-Leffler relaxation function, a special one-parameter Mittag-Leffler function [3].

In this paper, with the methodology of inversion of the Laplace transform proposed
by M. N. Berberan-Santos, we express the three-parameter Mittag-Leffler function as an
integral on the positive real axis. The paper is organized as follows: in Section 1, we
present the methodology of inversion of the Laplace transform and some preliminaries
concepts. In Section 2, using this methodology, we express the integral representation of
three-parameter Mittag-Leffler function and we use the results from this study to discuss,
in Section 3, a class of improper integrals, expressing them in terms of the Mittag-Leffler
functions. Concluding remarks close the paper.

1 Preliminaries

The three-parameter Mittag-Leffler function, introduced by Prabhakar [20], is de-
fined for complex z ∈ C, α, β, γ ∈ C, R(α) > 0, R(β) > 0 and R(γ) > 0 by4:

Eγα,β(z) =

∞∑
j=0

(γ)j z
j

Γ (αj + β) j!
. (1)

Taking γ = 1 in equation (1), we get the two-parameter Mittag-Leffler function:

Eα,β(z) =
∞∑
j=0

zj

Γ (αj + β)
. (2)

If β = 1 in equation (2), we get the classical Mittag-Leffler function [17,25]:

Eα(z) =
∞∑
j=0

zj

Γ (αj + 1)
. (3)

Let f(t) be a real function of (time) variable t ≥ 0. The Laplace transform of f ,
denoted by F(s) = L [f ] (s), is defined as follows:

L [f ] (s) = F(s) =

∫ ∞
0

e−stf(t)dt, (4)

whenever the integral converges, where s = σ+iτ , with σ and τ real numbers, and F(s) = 0
for σ < 0. The expression for evaluation of the inverse Laplace transform, proposed by
M. N. Berberan-Santos [2], is given by5

f(t) =
eσt

π

∫ ∞
0

[R [F(σ + iτ)] cos(tτ)− I [F(σ + iτ)] sin(tτ)] dτ, (5)

for any real number σ satisfying the condition σ > σ0 > 0, and t > 0. The expression in
equation (5) recovers the real function whose Laplace transform is known.

4(γ)j :=
Γ (γ + j)

Γ (γ)
is the Pochhammer symbol and Γ (α) =

∫ ∞
0

tα−1e−tdt is the Gamma function.

5R [s] indicates the real part of s and the imaginary part is denoted by I [s].
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Remark 1. Writing s = σ+ iτ in equation (4) and being f(t) = 0 for t < 0, we can write

F(s) = F(σ + iτ) =

∫ ∞
−∞

e−σtf(t)e−iτtdt. (6)

Equation (6) represents the Fourier transform of the function ϕ (t) = e−σtf(t). Then, with
the conditions imposed on f , the function F(s) converges absolutely forR [s] = σ > σ0 > 0.
This implies that ϕ (t) = e−σtf(t) is absolutely integrable, and we may evaluate the inverse
Fourier transform of ϕ (t) = e−σtf(t) [see J. L. Schiff ( [21], p. 151)].

2 Main result

Consider the three-parameter Mittag-Leffler type function f(t) = tβ−1Eγα,β(λ tα),
over a restricted domain Ω = [0,∞). Suppose also that α > 0, β > 0 and γ > 0 in
equation (1). For t ∈ Ω and λ a real number, the Laplace transform of f(t) is given by

L
[
tβ−1Eγα,β (λ tα)

]
(s) =

sαγ−β

(sα − λ)γ
, for |λs−α| < 1. (7)

Theorem 1. Let α > 0, β > 0, γ > 0 and λ ∈ R. The three-parameter Mittag-Leffler
function has the following integral representation on the positive real axis

Eγα,β(λ tα) =
t1−β eσ t

π

∫ ∞
0

rαγ−β

r̃
cos
[
θ (αγ − β)− θ̃ + tτ

]
dτ, (8)

for t > 0, where σ > σ0 and σ0, r, θ, θ̃ and r̃ are defined by equations:

σ0 = |λ|
1
α . (9)

r = r (σ, τ) =
√
σ2 + τ2. (10)

θ = θ (σ, τ) = arccos

(
σ√

σ2 + τ2

)
= arcsin

(
τ√

σ2 + τ2

)
. (11)

r̃
1
γ cos

(
θ̃

γ

)
= rα cos (θα)− λ and r̃

1
γ sin

(
θ̃

γ

)
= rα sin (θα) . (12)

Proof. The function F(s) =
sαγ−β

(sα − λ)γ
is the Laplace transform of f(t) = tβ−1Eγα,β(λ tα).

The complex parameter s can be written as s = σ + i τ = reiθ. In this way, we get
equations (10) and (11). Rewriting the expression (sα − λ)γ in the denominator of F (s)

in the form (sα − λ)γ = r̃eiθ̃ and using equations (10) and (11) in the left-side, we get
equation (12). Through manipulation of F(s) we can separate its real and imaginary parts
and use the equation (5) to find integral representation in equation (8). If we choose

σ > σ0 = |λ|
1
α , then the inequality |λ s−α| < 1 is satisfied. �
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3 Improper integrals

In what follows we will discuss particular examples obtained for specific values of the
parameters appearing in equation (8).

Example 1. Let f(t) = Eβ1,β(t). We consider α = 1, β = γ and λ = 1 in equation (8).
We have αγ − β = 0 and from equation (9), we can choose σ = 2, we get

r cos (θ) = 2 and r sin (θ) = τ. (13)

Then, by means of equations (12) and (13), we obtain

θ̃ = β arctan (τ) and r̃ =
(
1 + τ2

)β
2 . (14)

Substituting equations (13) and (14) into equation (8), we can write an interesting integral
representation for a particular three-parameter Mittag-Leffler function which generalizes
some known results:

Eβ1,β(t) =
t1−β e2t

π

∫ ∞
0

cos [β arctan (τ)− tτ ]

(1 + τ2)
β
2

dτ, (15)

for t > 0 and β > 0. Taking β = 1 in equation (15), we have an integral representation
for the exponential function6 for t > 0:

e−t =
1

π

∫ ∞
0

cos (tτ) + τ sin (tτ)

1 + τ2
dτ. (16)

Example 2. Let f(t) = 1F1 (γ;β; t) be a confluent hypergeometric function [13]. It can

be expressed in terms of the Mittag-Leffler function: Eγ1,β(t) =
1

Γ(β)
1F1 (γ;β; t). Using

equation (8) we can obtain an integral representation for this confluent hypergeometric
function. Indeed, taking λ = 1 and α = 1 in equation (8) and choosing σ = 2 from
equation (9) we get

Eγ1,β(t) =
t1−β e2 t

π

∫ ∞
0

rγ−β

r̃
cos
[
θ (γ − β)− θ̃ + tτ

]
dτ,

or in a different form,

1F1 (γ;β; t) =
Γ(β) t1−β e2 t

π

∫ ∞
0

rγ−β

r̃
cos
[
θ (γ − β)− θ̃ + tτ

]
dτ. (17)

As σ = 2, from equations (10) and (11), we have

r =
√

4 + τ2 and θ = arccos

(
2√

4 + τ2

)
. (18)

Using equation (12) we obtain

θ̃ = γ arctan (τ) and r̃ =
(
1 + τ2

)γ/2
. (19)

6In this regard see also S. Gradshteyn [9]. The sum of equations 1 and 2 in [9], p. 424, with β = 1 and
a = t, results in equation (16).
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Finally, substituting equations (18) and (19) into equation (17), we obtain the integral
representation for the confluent hypergeometric function:

1F1 (γ;β; t) =
Γ(β) t1−β e2 t

π

∫ ∞
0

φ (t, τ) dτ, (20)

for t > 0, where γ > 0, β > 0, and

φ (t, τ) =

(
4 + τ2

)(γ−β)/2
(1 + τ2)

γ/2
cos

[
(γ − β) arccos

(
2√

4 + τ2

)
− γ arctan (τ) + tτ

]
. (21)

Example 3. Let f(t) = Eα,α(−tα). We consider α = β, γ = 1 and λ = −1 in equation
(8). In this case, αγ − β = 0 and we will choose σ = 2 from equation (9). We have

Eα,α(−tα) =
t1−α e2t

π

∫ ∞
0

cos(tτ) cos θ̃ + sin(tτ) sin θ̃

r̃
dτ, (22)

where t > 0 and θ̃ and r̃ are given by equation (12). In particular, taking α = 2 in equation
(22), as σ = 2, it follows that

r cos θ = 2 and r sin θ = τ. (23)

Substituting α = 2 and λ = −1 into equation (12) and using equation (23), we have

r̃ cos θ̃ = r2 cos(2θ) + 1 = 5− τ2 and r̃ sin θ̃ = r2 sin(2θ) = 4τ. (24)

Multiplying the integrand in equation (22) by
r̃

r̃
, and substituting equations (23) and (24)

into (22), we thus derive the following assertion:

Eα,α(−tα) =
t1−α e2t

π

∫ ∞
0

(5− τ2) cos(tτ) + 4τ sin(tτ)

τ4 + 6τ2 + 25
dτ. (25)

If α = 2 in equation (25), we have

e−2t sin t =
1

π

∫ ∞
0

(5− τ2) cos(tτ) + 4τ sin(tτ)

τ4 + 6τ2 + 25
dτ, (26)

because E2,2(z) =
sinh
√
z√

z
imply E2,2

(
−t2
)

=
sinh it

it
=

sin t

t
.

4 Concluding remarks

We build an integral representation for the three-parameter Mittag-Leffler function
on the positive real axis using the inversion of the Laplace transform, without contour
integration, proposed by M. N. Berberan-Santos. This representation can express conver-
gent improper integrals in terms of trigonometric functions by means of the Mittag-Leffler
functions and the presented examples complement corresponding integral representations.
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