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Abstract. We present a Riemannian Conjugate Gradient (RCG) algorithm to solve the
Joint Diagonalization Problem in Stiefel manifolds. We use the special structure of this
manifold to build a procedure which avoids extra-calculations associated to vector trans-
portation. Numerical experiments which compare our algorithm with other known proce-
dures are also provided.
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1 Introduction

The joint diagonalization problem (JDP) forN symmetric n×nmatricesA1, A2, . . . , AN
consists of finding an orthogonal matrix of size n×p, which maximizes the sum of squares
of the diagonal entries at XTAlX, l = 1, . . . , N (see [12]). Getting a solution for this
problem is of great value in applications such as Independent Component Analysis (ICA),
and Blind Source Separation Problem, among others [3]. The problem JDP can be cast
as the following optimization problem:

minimize F(X) = −
∑N

l=1 ||diag(XTAlX)||2
subject to XTX = I,

(1)

Algorithms that addresses this quadratically constrained nonlinear optimization problem
are diverse, most of them using the associated first order optimality conditions and based
on the gradient of the Lagrangean function. This kind of method build a sequence {Xk}
of iterates that converges to optimal solutions, which are feasible to the orthogonality
constraints. Nevertheless, this sequence is feasible (orthogonal) only at optimality. In
some cases, it is important to build a sequence {Xk} of feasible matrices converging to
optimality, in virtue that the structure is kept in the search ( [2]). The idea of manifold
optimization methods is to use the tools about constructing optimization algorithms in
Rn, but following the manifold, ensuring feasibility in each iteration.
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The next section is devoted to some notation and background on Riemannian mani-
folds, including RCG methods, and tools on Stiefel manifolds. The third section exhibit
our proposed algorithm, and comment it convergence properties. Section 4 deploy numer-
ical experiments, and finally we provide conclusion remarks.

2 Notation and Background

Let A be an n× n matrix with real entries. We say that A is skew symmetric if A> =
−A. The trace Tr[A] of A is defined as the sum of the diagonal entries. The Euclidean
inner product of two matrices A,B ∈ Rm×n is defined as 〈A,B〉e :=

∑
i,j aijbij = Tr[A>B],

where aij and bij denote the (i, j) component of the respective matrix. The canonical
inner product associated to X ∈ Rm×n is defined as 〈A,B〉c := Tr[A>(I − 1

2XX
>)B].

The Frobenius norm of A is defined as the metric induced by the Euclidean inner product,
that is, ||A||F =

√
〈A,A〉e. Let F : Rn×p → R be a differentiable function, and denote by

G := DF(X) :=
(
∂F(X)
∂xij

)
the matrix of partial derivatives of F with respect to X (the

Euclidean gradient of F). The directional derivative of F along a given matrix Z ∈ Rn×p

at a given point X is defined by DF(X)[Z] := limt→0
F(X+tZ)−F(X)

t = 〈G,Z〉e. Let E
be an Euclidean space. A Riemannian manifold M is a manifold whose tangent spaces
TxM at x ∈M are endowed with a smooth local inner product (the Riemannian metric)
g(ηx, ξx) = 〈ηx, ξx〉x, where ηx, ξx ∈ TxM. Let f :M→ R be a differentiable scalar field
on a Riemannian manifold M. The Riemannian gradient gradf(x) of f at x is defined
as the unique element of TxM that satisfies 〈gradf(x), ξ〉x = Df(X)[ξ], ∀ξ ∈ TxM.
Now, let f : E → R be a differentiable objective function that we want to minimize on a
Riemannian submanifold, and let ∇f(x) be the Euclidean gradient of f at x ∈ E . We can
build a Riemannian gradient for f at x ∈M by projecting the Euclidean gradient ∇f(x)
onto TxM, that is gradf(x) = PTxM[∇f(x)].

Two other concepts regarded to manifolds are of our interest: A retraction R is a
smooth map from the tangent bundle TM :=

⋃
x∈M TxM onto M which allows us to

go back onto the manifold. A vector transport Tηx(ξx) facilitates the movement from a
tangent manifold to another. Both of the objects belong to tangent subspaces of the
manifold, which facilitates the operations related to algorithmic procedures. In [2] are
provided formal definitions, and studied their properties. Since TxM is an affine set on E ,
then we can define Tηx(ξx) = PTRx (ηx)(ξx).

2.1 Riemannian conjugate gradient methods

Now we provide a brief review of the Riemannian conjugate gradient methods (RCG). A
complete description of these methods appear in [2,4]. Manifold-constrained optimization
refers to a class of problems of the form, min f(x) s.t. x ∈ M, where f :M→ R is a
given smooth real-valued function, and M is a Riemannian manifold, that is a manifold
equipped with an inner product on the associated tangent spaces. A general iteration
of a RCG update the iterate by the following scheme, starting in x0 ∈ M with η0 =
−gradf(x0), xk+1 = Rxk(τkηk), where Rxk() : TxkM → M is a retraction, τk > 0 is
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the step-size and ηk ∈ TxkM is given by the recursive formula, ηk+1 = −gradf(xk+1) +
βk+1Tτkηk(ηk), a linear combination of the Riemannian Gradient and a transported (to the
current iterate tangent space) version of the previous search direction. There are several
expressions to update the parameter βk+1 of the equation above. Some of the most popular

are, the β of Fletcher-Reeves βFRk+1 =
〈gradf(xk+1),gradf(xk+1)〉xk+1

〈gradf(xk),gradf(xk)〉xk
, and the β of Polak-Ribière,

βPRk+1 =
〈gradf(xk+1),gradf(xk+1)−Tτkηk (gradf(xk))〉xk+1

〈gradf(xk),gradf(xk)〉xk
. It has been proposed RCG algorithms

to solve particular cases of (1) (see [1, 2, 4, 14]). Since vector transportation between
different tangent spaces are needed in the formulas, then in each iteration an amount of
computational effort should be dedicated to this task. If M is an embedded submanifold
of a Euclidean space E , with an associated retraction Rx(·), then TyM⊂ E for all y ∈M,
and so, a vector transport can be defined by Tηx(ξx) = PRx(ηx)(ξx),

The use of vector transports makes the RCG algorithms to perform more matrix mul-
tiplications per iteration than the Riemannian steepest descent. In [14], Zhu introduce
two novel vector transports associated with the Cayley transform retraction for Stiefel-
constrained optimization. However its two vector transports require to invert a matrix,
which can be computationally expensive.

2.2 Tools on Stiefel manifold

In this subsection, we briefly review some tools about the Stiefel manifold St(n, p),
which is the feasible set of the problem (1), as discussed in [2, 4]. It is well known
that the Stiefel manifold St(n, p) is an embedded submanifold of Rn×p. The tangent
space of St(n, p) at X ∈ St(n, p) is TXSt(n, p) = {Z ∈ Rn×p : Z>X + X>Z = 0}.
It is easy to verify that the tangent space coincide with ΩX = {Z ∈ Rn×p : Z =
WX, for some skew-symmetric matrix W ∈ Rp×p}. The canonical projection onto TXSt(n, p)
is

PcTXSt(n,p)[ξ] = ξ −XξTX. (2)

Now we consider the function F defined in problem (1). To calculate the Riemannian gradi-
ent of F associated to the Stiefel manifold, we need to project the (Euclidean) gradient onto
the tangent space of St(n, p) at the current point. We first calculate the Euclidean gradient
∇F . Observe first that for each l = 1, . . . , N , ||diag(XTAlX)||2F = tr(diag(XTAlX)2) =
tr(XTAlXdiagX

TAlX). The matrix of partial derivatives for this expression is given by
4AlXdiag(XTAlX). The last expression leads us to our Euclidean gradient: ∇F(X) =
−4
∑N

l=1AlXdiag(XTAlX). The Riemannian gradient of F in St(n, p) is deduced by using
the projection in (2): gradF(X) = ∇F(X)−X∇F(X)TX. This Riemannian gradient is
actively used in our proposed algorithm.

3 A Riemannian Conjugate Gradient Algorithm

In this section, we describe the algorithm formulated in [7], specially adapted to our
problem. The merit of such algorithm is focused on the savings due to our vector trans-
port. Our updating formula, differently of the general RCG, does not need to use parallel
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transport explicitly. This novelty is what differentiates our proposal from the standard
RCG methods discussed in section 3. Let Xk be the current iterate, and define the new
iterate Yk(τ) as a point on the curve Yk(τ) = Qf(Xk + τZk), where τ > 0 is the step-size,
Zk = WkXk, and Qf(·) denote the mapping that sends a matrix to the Q factor of its QR
decomposition such that the R factor is an upper triangular p × p matrix with strictly
positive diagonal elements. It is known that the Qf(·) is a retraction on Stiefel mani-
folds (see [2]). The updating scheme for Zk involves calculating Wk recursively, starting
in W0 = −A0, by Wk = −Ak + βkWk−1, where Ak := A(Xk) = GkX

>
k − XkG

>
k , is the

gradient operator as defined in section above. The parameter is updated by

βk =

{
βFR−PRk if DF(Xk)[Zk] < 0
0 in other case,

(3)

where

βFR−PRk =


−βFRk if βPRk < −βFRk
βPRk if |βPRk | < βFRk
βFRk if βPRk > βFRk ,

and βFRk , βPRk are the well-known formulas of Fletcher-Reeves and Polak-Ribière [5], re-
spectively. The choice for this updating formula yields a descent direction algorithm, as
proven in [7].

Now we present a new transport for Stiefel manifolds. Consider X ∈ St(n, p), and
ξX , ηX ,∈ TXSt(n, p). Given a retraction RX(·) on Stiefel manifolds, we define our vector
transport as,

TηX (ξX) := WRX(ηX). (4)

In [7] we demonstrate that in fact TηX (ξX) is a vector transport on St(n, p). Observe that
the calculation of our vector transport (4), is much simpler than those existing in the liter-
ature. This only requires compute a matrix multiplication, hence this vector transport can
generate more efficient Riemannian conjugate gradient algorithms. Using this particular
transport vector, it can be shown that the direction search given by Zk is indeed a RCG di-
rection. This connects our proposal with the standard Riemannian conjugate methods pre-
sented in section 2.1. In fact, it is easy to show that Zk+1 = −∇cF(Xk+1)+βk+1WkXk+1,
and by using our vector transport Zk+1 = −∇cF(Xk+1)+βk+1TτkZk(Zk), therefore, the di-
rection search that we propose, corresponds to a Riemannian conjugate gradient direction,
for which, the calculation of the vector transport is implicit.

Typically, monotone line search algorithms construct a sequence {Xk} such that the
sequence {F(Xk)} of objective values is monotone decreasing. Generally these methods
calculate the step size τ oriented by minimum values for {F(Yk(τ))}. Approximated min-
imal solutions are sufficient to ensure the convergence properties. In particular we use the
so called Armijo Rule [5]. Now we propose our algorithm.
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Algorithm 1 Quasi Conjugated Gradient Method with Armijo’s Inexact Line Search

Require: X0 ∈ St(n, p), ρ, ε, δ ∈ (0, 1), G0 = DF(X0) A0 = G0X
>
0 −X0G

>
0 , W0 = −A0,

Z0 = W0X0, k = 0.
Ensure: X∗ an ε-stationary point.
1: while ||Ak||F > ε do
2: Step size selection: take an initial step-size τ = µ0 where µ0 > 0.
3: while F(Yk(τ)) > F(Xk) + ρτDF(Xk)[Zk] do
4: τ = δτ ,
5: end while
6: Xk+1 = Yk(τ) := Qf(Xk + τZk),
7: Calculate, Gk+1 = DF(Xk+1) and Ak+1 = Gk+1X

>
k+1 −Xk+1G

>
k+1,

8: Update Wk+1 = −Ak+1 + βk+1Wk with βk+1 as in (5),
9: Zk+1 = Wk+1Xk+1,

10: k = k + 1,
11: end while
12: X∗ = Xk.

The bottleneck of the previous algorithm is found in step 3, where several QR factor-
ization must be calculated. In order to solve efficiently the QR factorization of the matrix
M = Xk + τZk we use Cholesky factorization. The Riemannian conjugate gradient meth-
ods require that the step size τ satisfy the strong Wolfe conditions [5], (whose Riemannian
version appear in [8, 14]) in each iteration, and furthermore, the vector transport needs
to satisfy the non-expansive Ring-Wirth condition [8], to guarantee global convergence.
By means of a direct calculation, it can be verified that the vector transport given in (4)
satisfies this condition for the case of n = p, nevertheless, when p < n, this condition is not
necessarily fulfilled. There are ways to rescale any vector transport to obtain another one
that satisfies the Ring-Wirth condition [10]. However, if we set the algorithm to periodi-
cally restart the direction at βk = 0, then we can guarantee that all these Zk are descent
directions, and then the procedure becomes a line search method on matrix manifold.
Observe that in our algorithm, we use this restart and in this way, we have that {Zk}
gradient-related sequence that is contained in the tangent bundle of the Stiefel manifold.
In addition, the mapping RXk(ηk) := Qf(Xk + ηk) is a retraction (see [2]). Therefore, the
results of global convergence that appear in [2] regarding line-search methods on mani-
folds using retractions apply directly to Algorithm 1, which allows us to conclude that
limk→∞ ||∇eF(Xk)||F = 0.

4 Numerical Experiments

In this section, we perform some numerical experiments to investigate the efficiency of
the proposed method. All algorithms were implemented using MATLAB 7.10 on a intel(R)
CORE(TM) i7-4770, CPU 3.40 GHz with 500 Gb of HD and 16 Gb of Ram. We present
a comparative study of our algorithm versus other state-of-the-art algorithms for several
instances of the problems Joint diagonalization problem. In the following tables, we show
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Table 1: Numerical results for Experiment 1 with N = 10
Ex.5 n = 30, p = 10 Ex.6 n = 50, p = 30

Methods Nitr Time NrmG Fval Feasi Error Nitr Time NrmG Fval Feasi Error

QR CG 151.3 0.038 9.14e-6 -69.3 7.27e-16 0.0203 248.7 0.179 9.25e-06 -1.56e+2 1.44e-15 0.0353
OptStiefel 97.6 0.025 8.84e-6 -69.3 7.96e-16 0.0203 137.6 0.103 9.09e-06 -1.56e+2 3.31e-14 0.0353
Grad retrac 97 0.031 8.81e-6 -69.3 1.84e-14 0.0202 139.2 0.126 9.02e-06 -1.56e+2 1.83e-14 0.0353

Ex.7 n = 50, p = 50 Ex.8 n = 100, p = 40

QR CG 258.5 0.25 9.29e-6 -1.67e+e2 2.23e-15 0.2475 395.2 0.497 9.38e-6 -2.6e+e2 1.76e-15 0.1046
OptStiefel 145.6 0.141 9.09e-6 -1.67e+e2 4.95e-14 0.2475 206.3 0.28 9.26e-6 -2.6e+e2 2.48e-15 0.1046
Grad retrac 1.46e+2 0.187 9.05e-6 -1.67e+e2 2.12e-14 0.2475 1.99e+2 0.317 9.32e-6 -2.6e+e2 2.27e-14 0.1046

Table 2: Numerical results for Experiment 2 with N = 10
Ex.1 n = 30, p = 10 Ex.2 n = 50, p = 30

Methods Nitr Time NrmG Fval Feasi Nitr Time NrmG Fval Feasi

QR CG 208.7 0.052 3.83e-5 -2.10e+5 6.58e-16 518.2 0.328 2.90e-4 -1.40e+6 1.35e-15
OptStiefel 161.1 0.036 1.22e-5 -2.11e+5 8.02e-16 430.3 0.268 7.94e-6 -1.40e+6 4.90e-14
Grad retrac 190.9 0.076 1.50e-5 -2.11e+5 2.13e-14 694.2 0.97 2.68e-4 -1.40e+6 9.23e-15

Ex.3 n = 50, p = 50 Ex.4 n = 100, p = 40

QR CG 765.9 0.61 5.00e-4 -1.74e+6 2.05e-15 842.6 0.956 1.06e-2 -8.49e+6 1.57e-15
OptStiefel 597.5 0.456 8.14e-6 -1.74e+6 6.11e-14 852.2 0.979 2.06e-1 -8.49e+6 2.44e-15
Grad retrac 2443.5 5.75 5.00e-4 -1.74e+6 9.46e-15 1539.3 4.663 3.30e-3 -8.49e+6 6.74e-15

the average of each values to be compared in a total of 100 executions. In addition, the
maximum number of iterations is set at 8000, we use a tolerance for the gradient norm
of ε = 1e-5 and we take the following values, xtol = 1e-14 and ftol = 1e-14 as tolerances
for the other stopping criteria. First, we perform an experiment varying p and n (this
experiment was taken from [9]). In this case, we build the matrices A1, A2,..., AN as
follows. We randomly generate N = 10 n × n diagonal matrices Λ1, Λ2,..., ΛN , and also

choose randomly the n×n orthogonal matrix P , where the diagonal entries λ
(l)
1 , λ

(l)
2 ,..., λ

(l)
n

of each Λl are positive and in descending order. We then put A1, A2,..., AN as Al = PΛlP
>

for all l = 1, 2, ..., N . Observe that X∗ = PIn,p is an optimal solution to the problem (1).
As a starting point, we compute an approximate solution X0 = Qf(X∗ + Xrand), where
Xrand is a randomly chosen n×p matrix such that maxi,j{|xij |} ≤ 0.01, where xij denotes
the entry (i, j) of matrix Xrand. The numerical results, associated with this experiment
for several values of n and p, are contained in Table 1. From these table we can observe
that, all the methods compared show a similar performance in terms of CPU time, but
our method performs more iterations. However, the three algorithms get good solutions.

Next, we carry out another experiment, in order to test the methods starting from a
initial point randomly generated and not necessarily close to a solution. We set N = 10
and build 100 JDPs generating each of the N matrices A1, A2, . . . , AN in the following
way, first we generate randomly a matrix Ā ∈ Rn×n with all its entries following a Gaussian
distribution, then we build Al for Al = Ā>Ā and thus ensure that every Al is symmetric.
On the other hand, we generate at the initial point X0 randomly on the Stiefel manifold.
Table 2 shows the results obtained by the methods for different problem sizes. Based on
the results summarized in Table 2, we observe that OptStiefel and our QR CG are much
more efficient methods that Grad retrac in terms of CPU time. furthermore, our method
presents competitive results compared to those obtained by the other two methods.
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