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Abstract. In this work, a comparative analysis between Mexican Hat and Golden Hat
wavelets is presented. The latter wavelet belongs to a new family of functions generated
from Fibonacci coefficient polynomials. Although these wavelets have a very similar wave-
form, they have several distinct characteristics in time and the frequency domains. These
distinctions are explored here in the scale-space.
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1 Introduction

Wavelets are analysis functions used in the Wavelet Transform (WT), which is a math-
ematical tool that splits signals into different frequency bands, which one corresponding
to a specific scale [2,7,8]. The wavelets can be complex or real-valued functions. The com-
plex wavelets are generally used to measure the time evolution of frequency transients, in
contrast, real wavelets are often used to detect sharp signal transitions [7]. In a general
sense, this paper focuses on real wavelets.

The WT coefficients are directly affected by the wavelet function. Thus, the wavelet
choice must be made carefully, and it is done directly by the characteristics of the signal
to be analyzed [8]. There exist many different types of wavelet functions which can be
chosen. A frequently wavelet choice in visual analysis is the second Gaussian derivative,
known as Mexican Hat [2]. Another possible wavelet choice is the Golden Hat. Recenttly
presented in [4], the Golden Hat is a member of a wavelet family named Golden Wavelets.
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These wavelets are generated from a particular class of polynomials, called by Fibonacci-
coefficient polynomials (FCPs), see [3] for more details on these polynomials. However, the
first relation between wavelets and FCPs was studied in [6], where a new wavelet function
constructed by those polynomials is presented.

The Golden Hat waveform is very similar to the classical Mexican Hat wavelet, which
can see in [4], where visual comparisons were made between these wavelets. In this work,
a more detailed comparative analysis between Golden and Mexican Hat wavelets is per-
formed, highlighting the similarities and distinctions between them, both in relation to
their waveforms and their applicability in time-frequency analysis. Therefore, in this work,
it is intended to present the Golden Hat as an alternative to Mexican Hat, which, due to
its characteristics, may be more advantageous in certain applications.

2 Real Wavelets and Continuous Wavelet Transform

A real wavelet ψ(t) is a finite energy function, i.e., ‖ψ‖2 =
∫ +∞
−∞ |ψ(t)|2dt < +∞, which

satisfies the admissibility condition given by [1, 5]:

cψ =

∫ +∞

0

|Ψ(jΩ)|2

Ω
dΩ < +∞, (1)

where Ψ(jΩ) =
∫ +∞
−∞ ψ(t) e−jΩt dt is the Fourier Transform (FT) of ψ(t), where Ω is the

angular frequency parameter, and j =
√
−1 is the imaginary unit. The function ψ(t) is

called a mother wavelet provided it is well localized and oscilatting [8]. The admissibility
condition implies that

∫ +∞
−∞ ψ(t)dt = Ψ(0) = 0, which means that wavelets are zero average

functions [2]. Furthermore, a wavelet can be interpreted as a bandpass linear filter [7].
For scaling s (s > 0) and translation τ parameters, and for a specific real wavelet choice

ψ(t), the continuous wavelet transform (CWT) of a continuous time signal of finite energy
x(t) is given in the equation (2) [2, 7, 8]:

W (s, τ) =

∫ +∞

−∞
x(t)ψs,τ (t) dt, (2)

where ψs,τ (t) = 1√
s
ψ
(
t−τ
s

)
. As can see in equation (2), W (s, τ) measure, in certain sense,

the fluctuations of the signal x(t) around the point τ , at the scale given by s > 0 [8]. When
s increases, ψ(t) is expanded, and its frequency content moves to the lower frequency
bands. Decreasing s implies the compression of ψ(t), and its frequency content moves to
the higher bands. Generally, wavelet functions are considered to have unit energy, i.e.,
‖ψ‖2 = 1, and the normalization factor 1/

√
s ensures ‖ψ‖2 = ‖ψs,τ‖2. Equation (2) can

also be rewritten as a convolution product [7].
As can be seen from equation (2), W (s, τ) are not only affected by scale and translation

parameters, but also by wavelet function choice. Therefore, the choice of the wavelet is
very important and it depends on what signal features are desired to detect. There are
different types of wavelet functions that can be used in the CWT. A typical wavelet choice
is

ψmh(t) =
2π−1/4

√
3

(
1− t2

)
e−t

2/2, (3)
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that was first used in computer vision to detect multiscale edges [9]. This wavelet is
the second derivative of the Gaussian probability density function, sometimes called the
Mexican Hat function because it resembles a cross section of a “mexican hat” [2], as it
can be seen in the Figure 1-(a) in red line, where ψmh(t) plot is shown with normalized
amplitude. The correspondent Mexican Hat FT is expressed by equation (4). The mag-
nitude spectrum of the ψmh(t) is shown in Figure 1-(b) in red line (also with normalized
amplitude).

Ψmh(jΩ) =

√
8π1/4

√
3

Ω2e−Ω2/2. (4)

3 Golden Hat: a new wavelet function

Recently, a new family of wavelet functions generated from FCPs was presented in [4].
This family is called Golden Wavelets, and each member is obtained by the n-th derivative
of the quotient between two distinct FCPs. The Golden Hat that we will be defined and
explored in this work belongs to that family, which contains other wavelets with different
waveforms. See [4] for more details about the Golden family.

The FCPs were defined and introduced by [3], being constructed from the Fibonacci
sequence. The first two terms of this sequence are F0 = 1 and F1 = 1, and the other
terms are obtained recursively by Fk = Fk−1 + Fk−2, k ≥ 2. The polynomial sequence
{pn(t)}∞n=0, defined by pn(t) =

∑n
k=0 Fk+1t

n−k, is called Fibonacci-coefficient polynomial
sequence, by setting p0(t) = 1. We define the Golden Hat as the fourth derivative of the
quotient between p0(t) = 1 and p2(t) = t2 + t+ 2, expressed by the equation:

g(t) =
24(5t4 + 10t3 − 10t2 − 15t− 1)

(t2 + t+ 2)5
. (5)

In order to show that g(t) is a wavelet, it must satisfy the admissibility condition
defined by equation (1). To verify this, one must first calculate the FT of g(t). For this
purpose, it is extremely useful to use the FT time derivatives property [7]:

G(jΩ) = (j × Ω)4H(jΩ), (6)

where H(jΩ) is the FT of the function h(t) defined by the quotient between p0(t) and
p2(t). Thus, H(jΩ) can be given by

H(jΩ) =

∫ +∞

−∞

4

(2t+ 1)2 + 7
e−jΩtdt. (7)

Using integration techniques to solve (7):

H(jΩ) =
2π√

7
e1/2(jΩ−

√
7|Ω|). (8)

Therefore, by means of equations (8) and (6), we get

G(jΩ) =
2π√

7
Ω4e1/2(jΩ−

√
7|Ω|). (9)
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Finally, using G(jΩ) to calculate the admissibility condition defined in equation (1), we

obtain: cg = 2880π2

2401 < +∞, showing that g(t) is a wavelet. In equation (10) we express
the Golden Hat wavelet in a more simplified manner. In this expression, the Golden Hat
is symmetric in t = 0 and has unit energy.

ψgh(t) =
784×

√
2× 71/4 × (80t4 − 280t2 + 49)√

5π × (4t2 + 7)5
. (10)

In Figures 1-(a) and 1-(b) (blue lines) ψgh(t) waveform and its magnitude spectrum
|Ψgh(jΩ)| are shown, respectively. As well as Mexican Hat, Golden Hat resembles a
cross section of a ”mexican hat”.

4 Comparative Analysis

Comparative analysis were performed imposing to Mexican and Golden Hat wavelets
to have unit energy and an approximate support. In this way, one can better distinguish
the differences between them. For this reason, it was fixed a unit scale for Mexican Hat,
and it was chosen a specify scale s0 = 2.3265 to dilate Golden Hat. In Figure 1, the
wavelets ψmh1,0 (t) and ψghs0,0(t) are plotted in the same plane, in their respective time (1-(a))
and frequency (1-(b)) domains.

As it can be seen in Figure 1-(a), the considered wavelets have a very similar waveform
and they are symmetrical around t = 0. The similarity between this wavelets can also be
seen through the global maximum and minimum values, and their respective localizations.
In Table 1 these values and others metrics (with some approximate values) in time and
frequency domains for both wavelets.
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Figure 1: Wavelet waveforms in (a) time domain and (b) Magnitude spectrum in frequency
domain. Mexican Hat and Golden Hat are plotted as red trace and blue trace, respectively,
both with normalized amplitudes.

In relation to time domain, Golden Hat has four real zeros, while the Mexican Hat has
only two zeros. This fact explains why Golden Hat has more oscillations, which implies
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Table 1: Metrics for both wavelets.

Metrics Golden Hat Mexican Hat
Global Maximum ∼ 0.86 at t = 0 ∼ 0.86 at t = 0
Global Minimum ∼ −0.36 at t ∼= ±1.77 ∼ −0.38 at t ∼= ±1.73

Zeros t ∼= ±1.00 and t ∼= ±4.23 t = ±1.00
p 4 2
µ 0.00 0.00
σ2
t ∼ 1.35 ∼ 1.17
η ∼ 1.46 ∼ 1.50
σ2

Ω ∼ 0.24 ∼ 0.24
Peak frequency Ω ∼= 1.29 Ω ∼= 1.41

Passband 0.67− 2.22 0.68− 2.31
Bandwidth 1.55 1.63

a greater number p of vanishing moments. A wavelet ψ(t) has p vanishing moments if
the following condition is verified [8]:

∫ +∞
−∞ tkψ(t)dt = 0, k = 0, 1, · · · , p − 1. It can also

be seen that when |t| → +∞, the functions ψgh(t) → 0 and ψmh(t) → 0. Since this
decay is exponential, both wavelets have an effective support that will depend on the
specific tolerance in each application. For a wavelet with ‖ψ‖2 = 1, time localization
µ is defined by µ =

∫ +∞
−∞ t|ψ(t)|2dt, see [7]. Thus, using such expression, we find that

the time localization for both wavelets is µ = 0. The parameter σ2
t indicates the spread

around µ, calculated by the variance σ2
t =

∫ +∞
−∞ |t − µ|

2|ψ(t)|2dt. Note that the values of

σ2
t indicate that ψgh(t) has more time dispersion, i.e., the wavelet ψgh(t) is less localized

in time domain than ψmh(t).

In the frequency domain, the considered metrics were analized only to positive fre-
quencies. This is done only to characterize the wavelets frequency response. The η and σ2

Ω

parameters are the wavelet center frequency and the spread around it, respectively. These
values are measured by η = 1

2π

∫ +∞
0 Ω|Ψ(jΩ)|2dΩ and σ2

Ω = 1
2π

∫ +∞
0 (Ω−η)2|Ψ(jΩ)|2dΩ [7].

These parameters are relationed with analytic complex wavelets, since Ψ(jΩ) = 0 if Ω < 0,
see [7]. Since the magnitude spectrum of the wavelets are asymmetric, the center frequency
is not the peak frequency for both ψgh(t) and ψmh(t). It is noteworthy that σ2

t values
indicate that wavelets have approximately the same frequency dispersion. The passband
and bandwidth were characterize by the magnitude spectrum with normalized amplitude.
The passband indicated in Table 1 was calculated using a cut-off frequency of 6 dB at-
tenuation (close to 0.5 relative to peak). The filter bandwidth is simply the difference
between the passband frequencies upper and lower limit. It is observed that Mexican Hat
bandwidth is greater than the one for Golden Hat.

The comparative analysis was performed considering a Golden Hat dilatation by a
factor of s0 since, in this way, the wavelets waveforms are approximately superimposed.
If this expansion were not performed, Golden Hat would present very different metrics in
relation to Mexican Hat, since the Golden Hat generation gives it a greater compact sup-
port. Therefore, the results presented in Table 1 vary according to the scaling parameter
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s considered.

In order to show a decomposition example for the considered wavelets, CWT was used
to decompose a artificial signal x(t). In Figure 2-(a), its shown the signal x(t) with four
singularities at t = 0.2, t = 0.4, t = 0.6 and t = 0.8. For this decomposition, the wavelets
ψmh(t) and ψghs0,0(t) were the chosen as wavelet mother. In Figure 2-(b) it is shown the
decomposition at 7-th scale, for both wavelets. In Figures 2-(c) and 2-(d) present the
Mexican Hat and Golden Hat scalograms, respectively. These scalograms are obtained by
the CWT decomposition up to the 7-th scale. Numerical implementation was used to this
CWT decomposition.
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Figure 2: Graphics of (a) analized signal x(t) and (b) WT coefficients at 7-th scale,
calcuated by Mexican Hat (red line) and Golden Hat (blue line); escalograms for (c)
Mexican Hat and (d) Golden Hat.

From Mexican and Golden Hat scalograms, it can be observed a wide similarity between
them. Note that, both wavelets are efficient to detect and localize the singularities at low
scales. This similarity is expected, since the wavelets have a very similar waveform. By
the way, its observed small changes in the scalograms, as can been seen at high scales in
the region of t = 0.1 and t = 0.3 (see Figure 2-(b)). For these scales, Mexican Hat was able
to detect smooth signal features, since the Golden Hat not detected it. The differences for
both decompositions may be related by the vanishing moments. More vanishing moments
means that wavelet is smoother, and this is directly related to measure the local regularity
of a signal, see [7]. Therefore, in relation to scales considered, the Golden Hat measured
purely the regularity of the signal. On the other hand, if larger scales are considered,
smooth signal features will be detected for both wavelets.
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5 Conclusions

In this work comparisons between Golden and Mexican Hat wavelets were performed
showing a great similarity between them, according to the metrics considered in the com-
parative analysis, both in time and frequency domains. However, the Golden Hat wavelet
have twice as much vanishing moments than Mexican Hat. Thus, since the local regularity
of a signal is linked to the number of vanishing moments of a wavelet, the Golden Hat
can be chosen as an alternative to Mexican Hat depending on the characteristics of the
application, giving more softness to the wavelet signal representation.
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