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Resumo. In this paper, are propose new techniques for synthesis of output feedback control-
lers of descriptor system to attain the closed loop admissibility. A necessary and sufficient
condition are shown for the existence of such a controller in terms of linearized LMIs whose
solution yields a controller that satisfy the specification. Considered the existence problem
and the compute of output feedback that stabilizable in descriptor systems. This paper
show that based the coupled Sylvester equations and the coupled Lyapunov like equations
can also be used to obtain a set of necessary and sufficient conditions for the existence of a
output feedback controller, such that closed-loop system is admissible.
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1 Introduction

This paper deals the problem of stabilization by static output feedback for descriptor
systems. Remind that an n-dimensional descriptor system consists of a mixture de n-q
algebraic equations and q firts order diferential equations. Descriptor systems arise natu-
rally in modelling of several dynamical systems commonly used engineering applications
such as biological system, power systems and other interconnected systems [7], [10].

In the available literature on descriptor systems, there are two kinds of stabiliza-
tion problems for singular continuous-time systems. One consists in designing a output-
feedback controller in such a way that the closed-loop system is regular, impulse-free, and
stable or equivalently admissible. The other is to design a output feedback controller in
order to make the closed-loop system regular and stable.

The problem of computing a suitable static output feedback, from which these closed-
loop propierties are verified. These three desired properties can be described in terms of the
closed-loop eigenstructure: (i) the asymptotic stability is equivalent to have all the finite
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poles in the left half complex plane; (ii) the absence of impulsive modes is equivalent to have
q finite closed-loop; and (iii) the regularity is guaranteed if the system is impulse-free. Thus
the necessary and sufficient conditions for the existence of a stabilizing output feedback
are obtained as a set of coupled (generalized) Sylvester equations in [8], [9], [4], [5] [14] .

This paper is organized as follows. The second section, presents the problem, based in
the basic concepts, the necessary and sufficient conditions for existence of a solution. In
section 3 presents some results main with formulation the theorems . In section 4 presents
the aspects algorithmic and presents The numerical example illustrate the application of
the algorithm that outlines the basic steps are used to solve the problem is presented in
the fourth section. In the section 5 presents the regulator problem. Finally, concluding
remarks are apresented.

2 Preliminaries

The considered linear descriptor systems are described by :

Eẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Du(t) (2)

where: x ∈ X ∼ <n , u ∈ U ∼ <m , y ∈ Y ∼ <p and E ∈ <n×n, rank (E) = q < n ; as the
other matrices is an appropriate size with rank (B) = m, rank (C) = p and rank (D) = m.
The pair (E,A) is called regular if there exists s ∈ C such that det(sE − A) 6= 0 Thus a
regular descriptor system is in [13] and [7].

i) stable if all finite roots of det(sE −A) = 0 are in the open left half complex plane;
ii) impulse free if it exhibits no impulse behavior;
iii) finite dynamics detectable if there exists L such that (E,A + LC) is regular and

stable;
iv) impulse observable if there exists L such that (E,A+ LC) is regular and impulse-

free;
Considered the descriptor system

Eẋ(t) = Ax(t) (3)

Consider as follow definitions

Definition 2.1. [15] The system (1), (2) is said to be regular if det(sE −A) 6= 0.

Definition 2.2. [15] The system (1), (2) is said to be impulse-free is deg(det(sE−A)) =
rank(E).

Definition 2.3. [15] The system (1), (2) is said to be stable if all the roots of deg(det(sE-
A))=0 have negative real part.

Definition 2.4. [15] The system (1), (2) is said to be admissible if it is regular, impulse-
free and stable.

The objective the paper is to find a static output feedback controller

u(t) = Gy(t), (4)

such that the closed-loop system is admissible.

Eẋ(t) = (A+BGC)x(t),

y(t) = Cx(t) (5)
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Theorem 2.1. The system (1), (2) is admissible if and only if there exist a scalar ε > 0

and matrices P̃ > 0, Ũ > 0, W̃ > 0 and Q̃ > 0 such that
−E′P̃E − W̃ εA′ + E′ εA′ Q̃′S′

εA+ E −Ũ 0 0
εA 0 −I 0
SQ̃ 0 0 −I

 < 0 (6)

W̃ < (εA′ − Q̃′S′)(εA− SQ̃), (7)

P̃ Ũ = I (8)

where S ∈ <n×(n−r) is any matrix with full column rank and satisfies E′S = 0.

The presented a version of the generalized Lyapunov theorem in [11].

Theorem 2.2. [11] Let (E,A) be regular and (E,A,C) be impulse observable and finite
dynamics detectable. Then (E,A) is stable and impulse-free if and only if there exists a
solution (P,Q) to the equation:

A′P +Q′A+ C ′C = 0; Q′E = E′P ≥ 0 (9)

3 Main results

This paper show that based the coupled Sylvester equations and the coupled Lyapunov
like equations can also be used to obtain a set of necessary and sufficient conditions for
the existence of a output feedback controller u = ε−1K̃y(t) u = Gy with G = ε−1K̃ , such
that closed-loop system (5) is admissible.

Theorem 3.1. Given the continuous descriptor systems (1), (2). There exists a static
output feedback controller (4) such that closed-loop system (5) is admissible if there exist

a scalar ε > 0, matrices P̃ > 0, Ũ > 0, W̃ > 0 and Q̃ > 0 such that
−E′P̃E − W̃ εA′ + E′ εA′ Q̃′S′

εA+ E −Ũ 0 0
εA 0 −I 0
SQ̃ 0 0 −I

 < 0 (10)

W̃ < (εA′ − Q̃′S′)(εA− SQ̃), (11)

P̃ Ũ = I (12)

where S ∈ <n×(n−r) is any matrix with full column rank and satisfies E′S = 0. in this
case, a desired static output feedback control law can be chosen as

u(t) = ε−1K̃Cx(t) (13)

u(t) = Gy(t) (14)

Remark 3.1. The Theorem (3.1) presents necessary and sufficient conditions for the
admissibility of continuous descriptor systems (1), (2). The Theorem (3.1) provides a
sufficient condition for existence of the output feedback controller for continuous descriptor
systems.
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The Theorem is presented as follows:

Theorem 3.2. If there exist a scalar ε > 0, matrices P̃ > 0, Ũ > 0, W̃ > 0 and
Q̃ > 0 such that the equations (10) , (11) and (12) are satisfied.Then there exists an
output feedback matrix G : Y −→ U such that closed-loop system (5) is admissible. if the
sufficient following conditions are verified for some positive scalar v ≤ n and for some
pair of matrices V ∈ <n×v and T ∈ <q−v×n, that such TEV = 0, where rank (EV ) =
rank (TE) = q:
(i) Let Q = C ′C, Q ∈ <n×n, there exist matrices P = P ′ ≥ 0, P ∈ <n×n and Y = WV ′ ∈
<m×n, such that :

APE′ + EPA′ = −EC ′CE′ (15)

Pd = V ′PV > 0 ; TEPE′T ′ = 0 (16)

Y = GCP (17)

The theorem (3.2) is propose numerically solution algorithm to determine the output
feedback matrix in descriptor systems, where the equations (10) , (11) and (12) are satisfied
and such that closed-loop system (5) is admissible. The theorem (3.2) it is similarly
at [2], [5].

4 Aspects algorithmic

Is shown below that based coupled Sylvester equations and the coupled Lyapunov like
equations can also be used to obtain the sufficient conditions for the existence of a output
feedback, such that closed-loop system (5) is admissible.

4.1 The Syrmos-Lewis algorithm

Considered the Theorem (3.1) where a scalar ε > 0, matrices P̃ > 0, Ũ > 0, W̃ > 0

and Q̃ > 0 such that the equations (10), (11), (12) are satisfied. Then for the calculation
of the output feedback that stabilizes the closed-loop system, when m+ p > q.

Therefore determined The Syrmos-Lewis algorithm the existence of a output feedback,
such that closed-loop system (5) is admissible.

4.2 Example

Considered the following data [6] :

E =

 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

 ;

A =

 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00
1.00 1.00 0.00 0.00
0.00 −1.00 1.00 1.00
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B =

 0.00 0.00
0.00 0.00
1.00 0.00
0.00 1.00

 ; C = [ 1 0 0 0 ]

The corresponding descriptor system with finite poles are given by: σ(E,A) = {0.0, 0.0, −1.0}.
The system (C,E,A,B) is both stronlgy controllable and observable.

In a first step, considered a scalar ε > 0, matrices P̃ > 0, Ũ > 0, W̃ > 0 and Q̃ > 0
such that the equations (10), (11) and (12) in theorem (3.1) are satisfied.

In a second step, eigenstructure assignment is used thus the eigenvalues to positioned
are given for : ΛT = {−1} ∪ ΛV = {−3.5}.
Step 1 : For λ1 = −1, tj ∈ Cn and uj ∈ Cp, such that :

[ t′j u′j ]
[
A− λjE

C

]
= 0 ∀ j = 1, . . . , q − p (18)

determined T that verified (18) and such that TEP = 0 is also verified and (A,B, T,E)
have not invariant zeros :

T = [ 0.00 0.00 0.7071 −0.7071 ]

Step 3 : For λ2 = −3.5,[
A− λiE B
TE 0

] [
Pi
Yi

]
= 0∀ i = q − p+ 1, . . . , q (19)

determined P and Y using (19) :

P =

 0.1762
−0.6167

0.1626
−0.5693

 ; Y =

[
0.4405
−0.2101

]
;

Step 4 : Determined G that such GCP = Y :

G =

[
2.5000
−1.1923

]
;

A+BGC =

 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0

3.5000 1.0 0.0 0.0
−1.1923 −1.0 1.0 1.0

 .
The corresponding closed-loop system (E,A+BGC) has the desired generalized eigenva-
lues.

5 Regulator Problem

Consider the optimal regulator problem that minimizes

J =
1

2

∫ ∞
0
||y(t)||2dt (20)
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subject to (1), (2) and with

limt−→∞x(t) = 0 (21)

We assume that (E,A,B) be impulse controllable and finite dynamics stabilizable and
that (E,A,C) be impulse observable and dynamics detectable. Let G be a output feedback
matrix such that (E,A + BGC) is stable and impulse-free, such that closed-loop system

(5) is admissible. Thefore if there exist a scalar ε > 0, matrices P̃ > 0, Ũ > 0, W̃ > 0 and

Q̃ > 0 such that the equations (10), (11) and (12) in theorem (3.1) are satisfied.
Then from the symmetric version of Theorem (2.2), there exists a solution P to

(A+BGC)′P + P ′(A+BGC) +QQ+ (GC)′SS′ +

SSGC + (CG)′R(CG) = 0; E′P = PE ≥ 0 (22)

where QQ = C ′C, SS = C ′D, R = D′D > 0. It can be shown that the the performance
index is expressed as

J =
1

2
x′oP

′E′Px0 ≥ 0 (23)

6 Concluding remarks

In this paper, we proposed new techniques for synthesis of output feedback controllers
of descriptor system to attain the closed loop admissibility. A necessary and sufficient
condition is shown for the existence of such a controller in terms of linearized LMIs whose
solution yields a controller that satisfy the specification. Considered the existence problem
and the compute of output feedback that strongly stabilizable in descriptor systems.
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