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abstract. The double-averaged method should be used with caution in some situations
where the averaging is applied at different timescales. In this work, a study is presented
considering this observation for orbits around Mercury. When the average anomaly of the
Sun is eliminated, the idea is that all effects whose periods below 88 days are neglected.
As the rotation of Mercury is about 58.6 days, this means that the perturbation due to the
C22 term must also be neglected. However, since the C22 term is important and should be
taken into account, then terms longer than 58.6 days should also be preserved. In other
words, keeping the C22 term with a period of 58.6 days means that the solar terms with the
longest period (88 days) must also be maintained. Therefore, in this preliminary work, the
second average over the mean anomaly of the Sun (or Mercury) is not applied. An analysis
of the orbital motion of artificial satellites around Mercury is presented taking into account
its non-sphericity (J2, C22) and the perturbation of the third body. The single-averaged
method is applied to eliminate only the mean anomaly of the spacecraft. In this work, is
presented an approach considering the Kozai resonance.
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1 Introduction

In Carvalho et al. [3] presents an analysis of the orbital motion of artificial satellites
around Mercury taking into account its non-sphericity, the perturbation of the third body
and the solar radiation pressure. Where the double-averaged method was applied to elimi-
nate the short-period terms of the artificial satellite and the disturbing body, respectively.
The motivation for the execution of this present work was based on the reference [3] and in
the observations of one of the referees, which are highlighted in the following paragraph.

When the average anomaly of the Sun is eliminated all effects whose periods below 88
days are neglected. The rotation of mercury is about 58.6 days, so in principle effects with
a period of less than 88 days should be eliminated. However, as the C22 term is important,
see references [1,3,12], and therefore must be taken into account in the disturbing potential.
This means that terms longer than 58.6 days should also be preserved. Thus, here in this
work, the second average over the mean anomaly of the Sun (or Mercury) is not applied.
The approach presented in this paper is based in the Kozai resonance. In reference [14] is
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presented a study about the orbits of the outer satellites of Jupiter. The authors showed
an analytical expression for the libration of the pericenters. An analysis on resonance
is made, especially for the libration of the apses and Kozai resonance. In reference [13]
is analyzed effect of the secular resonance for the future of Phobos and Triton orbits.
The author develops the equation of the disturbing potential of the third body using the
single-averaged method. The non-sphericity (J2) of the central body is also considered.
The resonance when the period of precession of the longitude of the satellite pericenter is
near 1 year is known as evection resonance (see reference [11]). According to reference [15]
the evection resonance is caused by 1:1 commensurability between $ (longitude of the
satellite pericenter) and λ⊙ (Sun’s mean longitude). An approach is presented in reference
[11] where the authors investigated the probability of capture in evection resonance as
a function of the rate of tidal evolution and initial eccentricity. Analytical expressions
are developed for analysis of the resonant system, the escape mechanism of the evection
resonance is explored. The evection resonance is also the subject of the interesting paper
in reference [9] on the moons of extrasolar planets. In reference [9] it is shown that when a
moon-hosting planet undergoes internal migration, the dynamic interactions can of course
destroy the moon by capturing in a so-called evection resonance. In this resonance, the
eccentricity of the lunar orbit grows until the moon eventually collides with the planet
(see reference [4]). In reference [5] an analytical expansion of the disturbing function
arising from direct planetary perturbations on the motion of satellites is derived. The
authors have constructed an analytical model describing the evection resonance between
the longitude of pericenter of the satellite orbit and the longitude of a planet, and study
its dynamic. According to the authors, an interesting resonance happens when the secular
frequency $̇ of the satellite is commensurable with np (mean motion of the planet), which
corresponds to the argument 2w+2Ω−2λ. This approach is different from the classical one
where classical evection resonance occurs between the longitude of the satellite pericenter
and the longitude of the Sun (see reference [11]). In the continuation of this present work
will be made a study considering this type of resonance (evection).

2 Disturbing Potential

In reference [15] is presented a simplified model that allows to derive the resonant
configurations. The authors show, in an analytical way, the values of the semimajor axis
where evection resonances can occur. The disturbing potential for the Jupiter-Sun system
is developed in reference [15] considering the single-averaged model, where the disturbing
body is in circular and planar orbit. Here, we consider a resonance model similar to that
one shown in reference [15], but now we include the terms due to non-sphericity of the
planet (J2 and C22). The bodies that are considered in this work are Mercury, Sun and
spacecraft. Considering the Cartesian system fixed in Mercury. The reference plane is the
equator of the planet. See figure 1 of the reference [15] for more details. The disturbing
function of the motion of the artificial satellite perturbed by the Sun is

R⊙ =
µ⊙r2

2r3⊙ (3cos2(S)− 1) (1)
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where µ⊙ is the gravitational parameter of the Sun, r and r⊙ are the position vector of
the satellite and of the Sun, respectively. Here S is the angular distance between Sun and
the satellite. Now using equation (2.3) of the reference [15] (i⊙ = 0) for the expression of
S, we get

cos (S) = [cos (f + g) cos (h)− sin (f + g) sin (h) c] cos
(
λ⊙)+

[cos (f + g) sin (h) + sin (f + g) cos (h) c] sin
(
λ⊙) (2)

where λ⊙ = f⊙ + $⊙, $⊙ is the longitude of pericenter of the Sun. The orbital
parameters of the spacecraft are (a, e, i, l, g, h, f) semimajor axis, eccentricity, inclination,
mean anomaly, argument of the pericenter, longitude of the node, and true anomaly,
respectively. The same variables with index

⊙
are used for the Sun. Here c = cos(i). In

this preliminary study the same disturbing potential of the reference [15] is considered, but
developed differently. Here we do not use equations (2.5) and (2.6) of the reference [15], we
made a change of variable to perform the average over the mean anomaly of the spacecraft,
where a change in the integration variable is adopted for eccentric anomaly (E). This is
done by using known equations from the celestial mechanics, which are:

sin(f) = (
√

1− e2 sin(E))/(1− e cos(E)); (3)

cos(f) = (cos(E)− e)/(1− e cos(E)) (4)

r/a = 1− e cos(E) (5)

dl = (1− e cos(E))dE (6)

Now replacing equations (2), (3), (4) and (5) in equation (1), the average is made using
equation (6) and after algebraic manipulations we obtain,

R2SA = −15
16

µ⊙a2

a⊙3 (−1/2e2(cos(i)− 1)2 cos(−2h+ 2g + 2λ⊙)−

1/2e2(cos(i) + 1)2 cos(2h+ 2g − 2λ⊙)+

1/5(3e2 + 2)(cos(i)− 1)(cos(i) + 1) cos(2h− 2λ⊙)+

(cos2(i)e2 − e2) cos(2g)− 1/5(3e2 + 2)(cos2(i)− 1/3))

(7)

Now, with i = 0 and algebraically manipulating, we get

R2SAi=0 =
µ⊙a2

2a⊙3 [(154 )e2 cos(2$ − 2λ⊙) + 1
2(32e

2 + 1)] (8)

where $ = h+ g (longitude of the satellite pericenter). We find exactly the equation (3.4)
of the reference [15]. Here $ − λ⊙ is the critical angle studied in reference [15].
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3 Non-sphericity of the central body

The development of this section is presented in reference [2] and will be replicated
here. Considering the equatorial plane of the planet as the reference plane, the disturbing
potential can be written in the form:

U = −µ
r

[(
Rp

r

)2
J2P2(sinφ)−

(
Rp

r

)2
C22P22(sinφ) cos(2γ)

]
, (9)

where µ is the gravitational constant of the planet, Rp is the equatorial radius of the
planet, Pn are the Legendre polynomials, Pnm the associated Legendre polynomials, the
angle φ is the latitude of the orbit with respect to the equator of the planet, the angle γ
is the longitude measured from the direction of the longest axis of the planet. Here the
γ term contains the time explicitly (see reference [6]). Using spherical trigonometry we
have sinφ = sin i sin(f+g). The Legendre polynomials for J2 and the Legendre associated
functions for the sectorial C22 term can be written in the form (see reference [6])

P2(sinφ) = 1
2(3s2 sin2(f + g)− 1),

P22(sinφ) cos 2λ = 6(ξ2 cos2 f + χ2 sin2 f + ξχ sin 2f)− 3(1− s2 sin2(f + g)),
(10)

where we used the shortcut ξ = cos g cos Ω− c sin g sin Ω, χ = − sin g cos Ω− c cos g sin Ω,
s = sin i, and c = cos i. Here Ω is the node longitude of the orbit. Now, we write the
potential given by equation (9) as a function of the orbital elements. Invoking equation
(10) and the relation µ = n2a3, we get

U20 = −1
2
a3

r3
εn2(3s2(sin(f + g))2 − 1) (11)

where ε = J2R
2
p. Here n is the mean motion of the satellite. Analogously, for the sectorial

perturbation (see reference [6]), we get

U22 = a3

r3
δn2(6ξ2(cos(f))2 + 6χ2(sin(f))2 + 12ξχ sin(2f)− 3 + 3s2(sin(f + g))2) (12)

where δ = C22R
2
p. To write the disturbing potential, we apply the single-averaged model.

The development of the equations is carried out in closed form to avoid expansions in
eccentricity and inclination. For this, it was necessary to perform algebraic manipulations
where we used known equations of celestial mechanics, namely equations a/r = (1 +

e cos(f))/(1 − e2) and dl = 1√
1−e2

r2

a2
df , where l is the mean anomaly of the spacecraft.

After performing the single-averaged model over the true anomaly of the spacecraft using
equation (11), and after some algebraic manipulations, we get

< RJ2 >= −1
4

ε
(1−e2)3/2n

2(3s2 − 2) (13)

Now, using equation (12) and the ξ and χ variables to develop the potential due to the
equatorial ellipticity of the planet, we get < RC22 >= −3

2
δ

(1−e2)3/2n
2(c2 − 1) cos(2Ω).
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The approach to analyze the effect of the C22 term is based in references [2, 12]. In this
equation, the node longitude of the orbit Ω is replaced by the expression Ω = h− ρt given
by reference [10], where ρ is the rotation rate of the planet and t is the time. Thus, by
replacing this expression in the equation due to the C22 term, we get

< RC22 >= −3
2

δ
(1−e2)3/2n

2(c2 − 1) cos(2ρt− 2h) (14)

4 Applications

The resonance of Kozai (see reference [8]) is a secular disturbing effect that causes
variations in the orbital eccentricity and inclination and produces a libration (oscillation
about a constant value) in the argument of the pericenter. The resonant potential conside-
red in this application due to the Kozai resonance is given by equation (13) (oblateness-J2)
added to the secular terms and terms that are multiplied by cos(g) in equation (7). Using
contour plots and a simplified disturbing potential a qualitative analysis for the motion
is performed. All the periodic terms that are not factorized by cos(2g) are neglected.
Following reference [7] a condition to investigate the existence of libration and circulation
is given by: if C > 0.6 the motion is a circulation if C < 0.6 the motion can circulate
and librate. Where the constant C is given by the formula C = (1 − e2)cos2(i) (see
reference [7]).

Figura 1: eccentricity (e) versus argu-
ment of the pericenter (g-rad). Distur-
bing potential: RJ2 + R2SAKozai

. Libra-
tion Center for C=0.05 and a=5000 km.

Figura 2: eccentricity (e) versus argu-
ment of the pericenter (g-rad). Distur-
bing potential: J2 + R2SAKozai

. Libra-
tion Center for C=0.1 and a=5000 km.

The Figures 1 and 2 show the libration center of the orbits that librates around the
equilibrium point, considering a constant C (see caption). In these two cases, the argument
of the pericenter in the libration region is about 0◦, 90◦, 180◦, 270◦, and these values are
important in the case of frozen orbits (see reference [1]). For other values of the constant
C we have circulation, where there is no libration center. The Figures 3 and 4 show that
when the satellite is closest to the planet, some regions of libration have been destroyed
and others amplified.
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Figura 3: eccentricity (e) versus argu-
ment of the pericenter (g-rad). Distur-
bing potential: RJ2 + R2SAKozai

. Libra-
tion Center for C=0.05 and a=3000 km.

Figura 4: eccentricity (e) versus argu-
ment of the pericenter (g-rad). Distur-
bing potential: J2 + R2SAKozai

. Libra-
tion Center for C=0.1 and a=3000 km.

5 Conclusions

The disturbing potential of single-averaged was developed considering the perturbati-
ons of the third body (in circular and planar orbit) and the non-sphericity of the central
body. The two main terms due to flattening (J2 and C22) in the poles and in the equator,
which are important in the case of the planet Mercury, were considered. With a simpli-
fied model for the disturbing potential, it is possible to make a qualitative analysis of the
motion of artificial satellites. Considering our disturbing potential, we present an analysis
with the resonant terms. Such terms are due to the resonance of Kozai. Regions are
determined where the satellite cannot be found. These regions are defined by the Kozai
resonance. The regions where the motion is of the libration type are important for an
approach on studies of frozen orbits. This is of extreme importance for some types of
space missions. In the continuity of this work, the disturbing potential due to the third
body will be developed in elliptical orbit, since Mercury has a considerable eccentricity.
Other terms of Mercury flattening will be taken into account in the disturbing potential
(for example, the C22 and C31 terms). We will present a study considering the apsidal
and evection resonances.
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