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Abstract. Zika virus spreads to people primarily through the bite of an infected Aedes
species mosquito (Ae. aegypti and Ae. albopictus). Zika can also be passed through sex
from a person who has Zika to his or her sex partners and it can be spread from a pregnant
woman to her fetus. People can protect themselves from mosquito bites and getting Zika
through sex. ZIKV continues to spread geographically to areas where competent vectors
are present. Although a decline in cases of Zika virus infection has been reported in some
countries, or in some parts of countries, vigilance needs to remain high. In this work we
propose a mathematical model that uses diffusion-advection equations to study the impact
of the Zika epidemic. We present a numerical scheme linked to the finite elements method
(FEM) with finite differences to solve the model. The computer simulations are performed
for Suriname and El Salvador which have different characteristics and allow us to extend
the study to other regions.
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1 Introduction

Zika virus is a mosquito-borne flavivirus that was first identified in Uganda in 1947 in
monkeys through a network that monitored yellow fever. It was later identified in hu-
mans in 1952 in Uganda and the United Republic of Tanzania. Outbreaks of Zika virus
disease have been recorded in Africa, the Americas, Asia and the Pacific. From the 1960s
to 1980s, human infections were found across Africa and Asia, typically accompanied by
mild illness. The first large outbreak of disease caused by Zika infection was reported from
the Island of Yap (Federated States of Micronesia) in 2007 [5].
Zika virus is primarily transmitted to people through the bite of an infected mosquito from
the Aedes genus, mainly Aedes aegypti in tropical regions. Aedes mosquitoes usually bite
during the day, peaking during early morning and late afternoon/evening. This is the
same mosquito that transmits dengue, chikungunya and yellow fever. Sexual transmission
of Zika virus is also possible [4].
Recovery from Zika virus disease may require anywhere from 3 to 14 days after becoming
infectious, but once recovered humans are believed to be immune from the virus for life
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many people infected with Zika may be asymptomatic or will only display mild symptoms
that do not require medical attention [4].

The use of diffusion and advection-diffusion equations in the study of epidemics can be
seen in [10,11], in particular for Dengue [8,9,14], for HIV / AIDS in [6,12] and for Malaria
in [7], these texts contributed background in the work that we present.

The objective of this work is to present a model for the Zika epidemic based on the
Diffusion-advection equations. To solve this model we use a numerical scheme based on
the finite elements method (FEM) and finite differences. Computational simulations are
performed in Surinam and El Salvador.

2 Mathematical Model

In the model that we propose, the variables are susceptible humans (S), infected humans
(I), recovered humans (R), susceptible mosquitoes (M) and infected mosquitoes (P).
Assumptions:

• We accept immunity: from the recovered state does not possible to return to the
susceptible state.

• There is not consideration of vertical transmission in humans or mosquitoes.

• The death by natural causes is equal in any state.

• The death of mosquitoes will be due to environmental factors because no control
strategy is applied.

• By definition epidemiological S, I,R,M and P are positive or null.

• The study was restricted to null border conditions.

The formulation of the model is:

∂S

∂t
− αs∆S + βs∇S = N1 − βy1SP − µS, (1)

∂I

∂t
− αI∆I + βI∇I = βy1SP − (r + ε+ µ)I, (2)

∂R

∂t
− αr∆R+ βr∇R = rI − µR, (3)

∂M

∂t
− αl∆M + βl∇M = N4 − βxMI − ξM, (4)

∂P

∂t
− αp∆P + βp∇P = βxMI − ξP. (5)

Initial Conditions

t ∈ [0, tf ],
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S(0) = s0 > 0, I(0) = i0 > 0, R(0) = r0 ≥ 0, M(0) = l0 ≥ 0 P (0) = p0 ≥ 0,

∂S

∂η
= 0,

∂I

∂η
= 0,

∂R

∂η
= 0,

∂M

∂η
= 0

∂P

∂η
= 0.

The elements of the model are describen on the below table (1).

Table 1: Description of parameters used in the model.

Parameters Description

αs Dispersion rate of susceptible humans

αI Dispersion rate of infected humans

αr Dispersion rate of recovered humans

αl Dispersion rate of susceptible mosquitoes

αp Dispersion rate of indected mosquitoes

βs Advective transport rate of susceptible humans

βI Advective transport rate of infected humans

βr Advective transport rate of recovered humans

βl Advective transport rate of susceptible mosquitoes

βp Advective transport rate of infected mosquitoes

βx The force of infection from infected human to susceptible mosquito

βy1 The force of infection from infected mosquito to susceptible human

µ , η Human and mosquito natural death rates

ε Disease-induced death rate for humans

r Human recovery rate

N1 Entry rate of susceptible humans

N4 Entry rate of susceptible mosquitoes

2.1 Method of solution

First we find the variational formulation of the model and apply the Garlekin method, [2],
[3].
Let W = {L2([0, Tf ], V )}, V = H1(W ) space of test functions and in V we define the
scalar product:

〈u, v〉 =

∫
Ω
uvdxdy, 〈∇u||∇v〉 =

∫
Ω
∇u∇vdµ

u ∈W , v ∈ V .
Let U = S, I,R,M,P , U(x, y, t) = U , v = v(x, y), by the formula of Green and for border

conditions,
∂U

∂η
= 0 in Ω = [0, tf ], we have

−αU 〈∆U, v〉 = αU 〈∇U ||∇v〉.

Let {φi} base of V and we are going to write:

βs = 〈βs1 , βs2〉, βI = 〈βI1 , βI2〉, βr = 〈βr1 , βr2〉, βl = 〈βl1 , βl2〉, βp = 〈βp1 , βp2〉.
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In this approximation the model is expressed as:

∑
j

dSj
dt
〈φj , φi〉 − αs

∑
j

Sj〈∇φj ||∇φi〉+ βs1
∑
j

Sj〈
∂φj
∂x

, φi〉+ βs2
∑
j

Sj〈
∂φj
∂y

, φi〉

= N1 − βy1
∑
j

Pj

∑
k

Sk〈φjφk, φi〉 − µ
∑
j

Sj〈φj , φi〉,

∑
j

dIj
dt
〈φj , φi〉 − αI

∑
j

Ij〈∇φj ||∇φi〉+ βI1
∑
j

Ij〈
∂φj
∂x

, φi〉+ βI2
∑
j

Ij〈
∂φj
∂y

, φi〉

= βy1
∑
j

Pj

∑
k

Sk〈φjφk, φi〉 − (r + µ+ ε)
∑
j

Ij〈φj , v〉,

∑
j

dRj

dt
〈φj , φi〉 − αr

∑
j

Rj〈∇φj ||∇φi〉+ βr1
∑
j

Rj〈
∂φj
∂x

, φi〉+ βr2
∑

Rj〈
∂φj
∂y

, φi〉

= r
∑
j

Ij〈φj , φi〉 − µ
∑
j

Rj〈φj , v〉,

∑
j

Mj〈φj , v〉 − αl

∑
j

Mj〈∇φj ||∇φi〉+ βl1
∑
j

Mj〈
∂φj
∂x

, v〉+ βl2
∑
j

Mj〈
∂φj
∂y

, φi〉

= N4 − βx
∑
j

Ij
∑
k

Mk〈φjφk, φi〉 − ξ
∑
j

Mj〈φj , φi〉,

∑
j

Pj〈φj , φi〉 − αp

∑
j

Pj〈∇φj ||∇φi〉+ βp1
∑
j

Pj〈
∂φj
∂x

, φi〉+ βp2
∑
j

pj〈
∂φj
∂y

, φi〉

= βx
∑
j

Ij
∑
k

Mk〈φjφk, φi〉 − ξ
∑
j

pj〈φj , φi〉.

For the temporary variables the Crank-Nicolson method (central differences in the time
tn+1

2

)
was used and the scheme is, [1],

∑
j

(
Sn+1
j − Sn

j

∆t

)
〈φj , φi〉 − αs

∑
j

(
Sn+1
j + Sn

j

2

)
〈∇φj ||∇φi〉+ βs1

∑
j

(
Sn+1
j + Sn

j

2

)
〈∂φj

∂x
, φi〉

+βs2
∑
j

(
Sn+1
j + Sn

j

2

)
〈∂φj

∂y
, φi〉βs2

∑
j

(
Sn+1
j + Sn

j

2

)
〈∂φj

∂y
, φi〉 − µ

∑
j

(
Sn+1
j + Sn

j

2

)
〈φj , φi〉.

∑
j

(
In+1
j − Inj

∆t

)
〈φj , φi〉 − αI

∑
j

(
In+1
j + Inj

2

)
〈∇φj ||∇φi〉+ βI1

∑
j

(
In+1
j + Inj

2

)
〈∂φj

∂x
, φi〉

+βI2
∑
j

(
In+1
j + Inj

2

)
〈∂φj

∂y
, φi〉 = βy1

∑
j

(
Pn+1
j + Pn

j

2

)∑
k

(
Sn+1
k + Sn

k

2

)
〈φjφk, φi〉

−(r + µ+ ε)
∑
j

(
In+1
j + Inj

2

)
〈φj , φi〉.

∑
j

(
Rn+1

j −Rn
j

∆t

)
〈φj , φi〉 − αr

∑
j

(
Rn+1

j +Rn
j

2

)
〈∇φj ||∇φi〉+ βr1

∑
j

(
Rn+1

j +Rn
j

2

)
〈∂φj

∂x
, φi〉
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+βr2
∑
j

(
Rn+1

j +Rn
j

2

)
〈∂φj

∂y
, φi〉 = r

∑
j

(
In+1
j + Inj

2

)
〈φj , φi〉 − µ

∑
j

(
Rn+1

j +Rn
j

2

)
〈φj , φi〉.

∑
j

(
Mn+1

j −Mn
j

∆t

)
〈φj , φi〉 − αl

∑
j

(
Mn+1

j +Mn
j

2

)
〈∇φj ||∇φi〉+ βl1

∑
j

(
Mn+1

j +Mn
j

2

)
〈∂φj

∂x
, φi〉

+βl2
∑
j

(
Mn+1

j +Mn
j

2

)
〈∂φj

∂y
, φi〉 = N4 − βx

∑
j

(
In+1
j + Inj

2

)∑
k

(
Mn+1

k +Mn
k

2

)
〈φjφk, φi〉

−η
∑
j

(
Mn+1

j +Mn
j

2

)
〈φj , φi〉.

∑
j

(
Pn+1
j − Pn

j

∆t

)
〈φj , φi〉 − αp

∑
j

(
Pn+1
j + Pn

j

2

)
〈∇φj ||∇φi〉+ βp1

∑
j

(
Pn+1
j + Pn

j

2

)
〈∂φj

∂x
, φi〉

+βp2
∑
j

(
Pn+1
j + Pn

j

2

)
〈∂φj

∂y
, φi〉 = βx

∑
j

(
In+1
j + Inj

2

)∑
k

(
Mn+1

k +Mn
k

2

)
〈φjφk, φi〉

−η
∑
j

(
Pn+1
j + Pn

j

2

)
〈φj , φi〉.

The matrix formulation for the iterative process is:

Cs(P
n+1, Pn)Sn+1 = Ds(P

n+1, Pn)Sn,

CI(c)In+1 = DI(Sn, Sn+1, Pn, Pn+1)In,

CR(c)Rn+1 = DR(In, In+1)Rn,

CM (In, In+1)Mn+1 = DM (In, In+1)Mn,

CP (c)Pn+1 = DP (In, In+1,Mn,Mn+1)Pn.

Where CI(c), CR(c) and CP (c) are matrices of constant coefficients.
Solution algorithm proposal:
The sistem for n = 0,

Cs(P
n+1, Pn)S1 = Ds(P

n+1, Pn)S0,

CI(c)I1 = DI(Sn, Sn+1, Pn, Pn+1)I0,

CR(c)R1 = DR(In, In+1)R0,

CM (In, In+1)M1 = DM (In, In+1)M0,

CP (c)P 1 = DP (In, In+1,Mn,Mn+1)P 0.

To solve the system we used a predictor-corrector method, [?], [?].
We start with the initial conditions (S0, I0, R0,M0, P 0), and we look for the first approxi-
mation (S1, I1, R1,M1, P 1).
For S∗ we solve: Cs(P

0, P 0)S∗ = Ds(P
0, P 0)S0.

Then look for I∗, CI(c)I∗ = DI(S0, S∗, P 0, P 0)I0.
We calculate R∗, CR(c)R∗ = DR(I0, I∗)R0.
We calculate M∗, CM (I0, I∗)M∗ = DM (I0, I∗)M0.
We calculate P ∗, CP (c)P ∗ = DP (I0, I∗,M0,M∗)P 0.
We obtained (S∗, I∗, R∗,M∗, P ∗).
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Now, with (S0, I0, R0,M0, P 0) and (S∗, I∗, R∗,M∗, P ∗) we look for (S∗∗, I∗∗, R∗∗,M∗∗, P ∗∗),
analogously to the previous scheme.
We calculate S∗∗ solving: Cs(P

0, P ∗)S∗∗ = Ds(P
0, P ∗)S0.

We calculate I∗∗, CI(c)I∗∗ = DI(S0, S∗∗, P 0, P ∗)I0.
We calculate R∗∗, CR(c)R∗∗ = DR(I0, I∗∗)R0.
We calculate M∗∗, CM (I0, I∗)M∗∗ = DM (I0, I∗)M0.
We calculate P ∗∗, CP (c)P ∗∗ = DP (I0, I∗∗,M0,M∗∗)P 0.
We declare the conditions of convergence and we continue the process. Then, for p inN:

(S1 = Sn∗, I1 = In∗, R1 = Rn∗,M1 = Mn∗, P 1 = Pn∗).

Repeat the process for n y (Sn, In, Rn,Mn, Pn) is the approximate solution of the model.

3 Discussion

The simulations are carried out for Suriname and El Salvador, which have different charac-
teristics (in Suriname βy1 > βx and in El Salvador βx > βy1) and Zika can become an
endemic problem. The values of parameters were extracted from [?,8,13,14] and Matlab-
R2017a software was used for programming. The unit of time is months and the initial
conditions were taken from [13]. All subpopulations were studied. Between the results of
the experimentation is, El Salvador reports increased diffusion of infected people respect
to Suriname which shows that the βx parameter has a strong influence on the model.

4 Conclusions

We present a mathematical model for the Zika epidemic that allows us to study its diffusion
over time. A numerical scheme was developed with the use of FEM and Crank-Nicolson
to solve the model. Computational experimentation showed the impact of the epidemic
in Suriname and El Salvador, where Zika can become endemic.
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