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Abstract. An autoassociative memory is an input-output system designed for the storage
and recall of a finite set of items. In this work, we present the class of complete lattice
projection autoassociative memories (CLPAMs). A CLPAM is a non-distributive autoasso-
ciative memory defined by a neural network with a hidden layer of morphological neurons.
More importantly, a CLPAM is formulated using only the partial ordering of a complete
lattice. As an example of CLPAM, we introduce the so called distance-based projection au-
toassociative memories (DBPAMs) which exhibit an excellent tolerance to salt-and-pepper
noise.
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1 Introduction

Associative memories are mathematical structures inspired by the human brain ability
to store and recall information. From a mathematical point of view, an associative
memory is a mapping M designed for the storage of a finite set of association pairs{

(x1,y1), . . . , (xk,yk)
}

[5]. Furthermore, an associative memory M is expected to re-
trieve a memorized item yξ even upon the presentation of a corrupted or partial version
x̃ξ of key item xξ. Equivalently, the identity M(x̃ξ) = yξ is expected to hold true for a
partial or corrupted version x̃ξ of xξ, for all ξ ∈ {1, . . . , k}. On the one hand, we say that
M is a heteroassociative memory if xξ differs from yξ for at least one index ξ ∈ {1, . . . , k}.
On the other hand, we have an autoassociative memory M if xξ coincides with yξ for all
ξ = 1, . . . , k. In this paper we only consider autoassociative memory models designed for
the storage and recall of a set finite set X =

{
x1, . . . ,xk

}
.

The famous recurrent neural network of Hopfield is an example of a model that can
be used to implement an autoassociative memory [6]. Apart from traditional models like
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the Hopfield’s network, associative memory models based on lattice computing paradigm
have been investigated since the middle 1990s [8]. According to Kaburlasos et al. [7],
lattice computing is defined as an evolving collection of tools and mathematical modeling
methodologies with the capacity to process lattice-ordered data per se, including logic
values, numbers, sets, symbols, graphs, etc. Lattice computing-based associative mem-
ories include, for instance, the traditional gray-scale morphological associative memories
[9], the broad class of fuzzy morphological associative memories [14, 15], and the Θ-fuzzy
associative memories [3]. Recently, we introduced the class of the max-plus and min-
plus projection autoassociative morphological memories (PAMMs), which also belongs to
the lattice computing paradigm [12]. Apart from the low computational effort, lattice
computing-based associative memories have been effectively applied for pattern classifi-
cation [3, 12], times-series prediction [15], and image understanding and reconstruction
[9, 4].

In the last year, we introduced the class of max-C and min-D projection autoassociative
fuzzy memories (max-C and min-D PAFMs) [11, 13]. Briefly, these models grew out of
a combination of the max-plus and min-plus projection autoassociative morphological
memories and the fuzzy morphological associative memories. Precisely, a PFAM projects
the input vector into either the set of all max-C combinations or the set of all min-D
combinations of the stored vectors. In addition, using Gaines’ fuzzy conjunction and
fuzzy implication, we obtained the so-called max-C PAFM of Zadeh [10]. The max-C
PAFM of Zadeh, as well as its dual model, does not perform any arithmetic operation. In
other words, the max-C and min-D PAFM of Zadeh depend only on the partial ordering
of the complete lattice [0, 1]n.

Motivated by the remarks in the previous paragraph, in this paper we propose the
class of complete lattice projection autoassociative memories (CLPAMs). CLPAMs are
only based on a complete lattice structure and, thus, they belong to the lattice computing
paradigm. Apart from defining the broad class of CLPAMs, we present the so-called
distance-based projection autoassociative memories (DBPAMs). Besides the max-C and
min-D PAFMs de Zadeh, the class of DBPAMs include models that exhibit an excellent
tolerance to salt-and-pepper noise.

2 Complete Lattice Projection Autoassociative Memories

First of all, a complete lattice L is a nonempty set equipped with a partial order 4L such
that every subset X ⊂ L has a supremum and an infimum on L [2]. The symbols

c
X andb

X denote respectively the infimum and supremum of the set X ⊆ L. In particular, the
least and the largest elements of L are respectively

c
L = OL and

b
L = 1L. Moreover, the

supremum and the infimum of the empty set are
b
∅ = OL and

c
∅ = 1L, respectively.

Examples of complete lattice include extended real numbers R = R ∪ {+∞,−∞} and
extended integer numbers Z = Z∪{+∞,−∞} with the usual order, denoted in this paper
by the symbol ≤.

Let L1, . . . ,Ln be complete lattices with partial orders 4L1 , . . . ,4Ln , respectively. The
Cartesian product L = L1 × . . .×Ln is also a complete lattice with the following induced
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ordering: Given x = [x1, . . . , xn]T and y = [y1, . . . , yn]T ∈ L, we define

x 4L y ⇐⇒ xi 4Li yi, ∀i = 1, . . . , n. (1)

Consider a set X =
{
x1, . . . ,xk

}
, called fundamental memory set. An autoassociative

memory is a mapping M such that the identity M(xξ) = xξ holds true as far as possible
for all ξ ∈ K = {1, 2, . . . , k}. Moreover, an associative memory must exhibit some noise
tolerance, that is, we expect M(x̃ξ) = xξ for a corrupted or partial version x̃ξ of the
fundamental memory xξ [5].

Let L be a complete lattice and consider a set X =
{
x1, . . . ,xk

}
⊂ L of fundamental

memories. A complete lattice projection autoassociative memory (CLPAM), denoted by
SL : L −→ L, is the associative memory defined as follows for any input x ∈ L:

SL(x) =
k

ξ∈JL

xξ, where JL =
{
ξ ∈ K : x 4L xξ

}
. (2)

Alternatively, the memory SL can be expressed by

SL(x) =
k{

xξ ∈ X : x 4L xξ
}
. (3)

In words, a CLPAM SL(x) is the greatest element of L which is less than or equal to all
fundamental memories greater than the input x. As a consequence, a CLPAM SL satisfies
SL(xξ) = xξ for all ξ ∈ K, i.e., the memory SL exhibits optimal absolute storage capacity.
Furthermore, a CLPAM is an idempotent operator, i.e., SL(SL(x)) = SL(x) for all x ∈ L.
In other words, SL projects the input pattern x onto the minimum of the the fundamental
memories such that x 4L xξ. Also, the associative memory SL is an extensive operator,
that is, the inequality x 4L SL(x) holds true for all x ∈ L. Summarizing, we have the
following theorem:

Theorem 2.1. Consider a fundamental memory X =
{
x1, . . . ,xk

}
⊂ L, where L is a

complete lattice. The associative memory SL defined by (3) is extensive (x 4L SL(x)),
idempotent (SL(SL(x)) = SL(x)), and satisfies SL(xξ) = xξ for all ξ = 1, . . . , k.

The following theorem address the noise tolerance of a CLPAM.

Theorem 2.2. Consider a fundamental memory set X =
{
x1, . . . ,xk

}
⊂ L and let x ∈ L

be the input. If there exists only one index γ ∈ K such that x 4L xγ, then the CLPAM
defined by (3) satisfies SL(x) = xγ.

Note that we cannot retrieve a fundamental memory xξ if x is greater than xξ. We
say that x is a dilated version of xξ if xξ 4L x. Dually, x is an eroded version of xξ if
x 4L xξ. From Theorems 2.1 and 2.2, we conclude that a CLPAM SL is robust in the
presence of erosive noise but it is not effective in the presence of dilative noise.

Example 1. Consider the set L = {a, b, c, d} equipped with the partial order depicted
on Figure 1. Note that the inequalities a ≺ b ≺ d and a ≺ c ≺ d hold true. Although b
and c are incomparable, we have bg c = d and bf c = a. Thus, L constitutes a complete
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Figure 1: Hasse diagram of the complete lattice L = {a, b, c, d} of the Example 1.

lattice and, using the induced order, we have that L = L4 is also a complete lattice. Now,
consider the following set of fundamental memories:

X =

x1 =


d
b
c
c

 ,x2 =


d
c
a
b

 ,x3 =


b
a
c
b


 ⊂ L. (4)

If x =
[
c b c a

]T
is presented as input, the CLPAM SL defined by (3) yields

SL(x) =
k{

xξ ∈ X : x 4L xξ
}

=
k{

x1
}

= x1, (5)

because x 4L x1 but x 64L x2 and x 64L x3.

In fuzzy systems, a fuzzy set on a finite universe of discourse can be identified with
an element of the complete lattice L = [0, 1]n with the usual partial order. In this case,
the CLPAM SL coincides with the dual of the projection fuzzy autoassociative memory
(PFAM) of Zadeh introduced recently by Santos and Valle [10].

Example 2. Let the hypercube L = [0, 1]4 be equipped with the usual order ≤. Consider
the fundamental memory set

X =

x1 =


0.6
0.7
0.1
0.7

 ,x2 =


0.9
0.3
0.5
0.9

 ,x3 =


0.5
0.5
0.6
0.8


 . (6)

and the following input vectors

x =
[

0.6 1.0 1.0 0.7
]T

and y =
[

0.0 0.7 0.0 0.7
]T
, (7)

which can be seen as versions of x1 corrupted by dilative and erosive noise, respectively.
Upon the presentation of the vectors x and y as inputs, the CLPAM SL yields

SL(x) =
k{

xξ ∈ X : x 4L xξ
}

=
k
∅ = [1.0, 1.0, 1.0, 1.0]T , (8)

and
SL(y) =

k{
xξ ∈ X : x 4L xξ

}
=

k{
x1
}

= x1. (9)

On the one hand, the CLPAM SL failed to retrieve the fundamental memory x1 upon
the presentation of the vector x contaminated by dilative noise. On the other hand, the
memory succeed to recall x1 from the version y of x1 corrupted by erosive noise.
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3 Distance-Based Projection Autoassociative Memories

Usually, we consider the unit interval [0, 1] with the usual order of real numbers. It turns
out, however, that we can endow [0, 1] with an order based on the distance to a certain
reference r [1]. Specifically, given a reference r ∈ [0, 1], we define the following total order
on the unit interval [0, 1]:

x 4r y ⇐⇒


|x− r| > |y − r|

or
|x− r| = |y − r| and x ≤ y.

(10)

In words, the inequality x 4r y holds if y is nearer to the reference r than x. Note that
4r becomes the usual order if r = 1. Also, we obtain the usual dual order on [0, 1] when
r = 0. Furthermore, the reference r is always the supremum of ([0, 1],4r) but the infimum
depends on the choice of the reference r. For example, if the reference is r = 0.5 then 0 is
the infimum of complete lattice ([0, 1],40.5).

Using the distance-based order defined by (10), we propose the distance-based projec-
tion autoassociative memories (DBPAMs) for storage and retrieval of vectors on [0, 1]n.
Formally, let L = [0, 1]n = L1×, . . . ,×Ln be the complete lattice that inherits the complete
lattice structure of Li = [0, 1] with the distance-based order 4ri for all i = 1, . . . , n. Given
a fundamental memory set X =

{
x1, . . . ,xk

}
⊂ L and references ri ∈ [0, 1], i = 1, . . . , n,

we define the DBPAM Sr : [0, 1]n −→ [0, 1]n as follows for all x ∈ [0, 1]n:

Sr(x) =

rk

ξ∈Jr

xξ, where Jr =
{
ξ ∈ K : xi 4ri x

ξ
i ,∀i = 1, . . . , n

}
. (11)

Note that, if Jr = ∅, then Sr(x) = r, where r = [r1, . . . , rn]T is the vector whose compo-
nents are the references.

The class of DBPAMs include the PAFMs of Zadeh. Precisely, the max-C PAFM of
Zadeh is obtained by considering r = [0, 0, . . . , 0]T . Dually, we have the min-D PFAM of
Zadeh when r = [1, 1, . . . , 1]T . It is not surprisingly that different reference vectors r ∈
[0, 1]n yield wildly different DBPAMs models. We would like to point out, however, that
the choice of an appropriate reference vector for a given task is an open problem yet. For
simplicity, in the following example we consider the constant vector r = [0.5, 0.5, . . . , 0.5]T .

Example 3. Consider the fundamental memory set X given by (6) and let L = [0, 1]4 be
the complete lattice with the partial order induced by ([0, 1],40.5), that is, the order given
by (1) and (10) with the reference vector r = [0.5, 0.5, 0.5, 0.5]T . Given the input vectors
x and y defined by (7), the DBPAM Sr produces the outputs

Sr(x) =

rk

ξ∈Jr

xξ = x1 and Sr(y) =

rk

ξ∈Jr

xξ = x1, (12)

because the inequalities x 4r x1, x 64r x2, x 64r x3, y 4r x1, y 64r x2, and y 64r x3

hold true. Note that, in contrast to the CLPAM based on the usual order, the DBPAM
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Sr retrieved the fundamental memory x1 upon presentation of an input x corrupted by
dilative noise as well as an input y contaminated by erosive noise. Such noise tolerance
follows from the inequalities 0 40.5 1 40.5 x for any x ∈ (0, 1). Thus, although a vector
corrupted by salt and pepper noise is contaminated by both dilative and erosive noise in
the ordinary sense (usual order), it corresponds to a vector contaminated only by erosive
noise on the complete lattice ([0, 1]n,40.5). This fact suggests that the DBPAM Sr, with
the constant reference vector r = [0.5, . . . , 0.5]T , can exhibit an excellent performance for
the reconstruction of gray-scale images corrupted by salt and pepper noise.

4 Concluding Remarks

In this paper, we introduced the class of complete lattice projection autoassociative memo-
ries (CLPAMs). Briefly, a CLPAM yields the infimum of the fundamental memories which
are greater than or equal to the input. We pointed out that in Theorem 2.1 that a CLPAM
is extensive, idempotent, and exhibit optimal absolute storage capacity. Furthermore, we
addressed in Theorem 2.2 the noise tolerance of a CLPAM.

From the mathematical point of view, CLPAMs are very well defined on complete
lattices. In particular, we proposed the subclass of distance-based projection associative
memories (DBPAMs) by considering the unit interval [0, 1] equipped with the distance-
based ordering 4r defined by (10). The class of DBPAM includes the projection autoas-
sociative fuzzy memories of Zadeh introduced recently by Santos and Valle [10]. Also, we
provided a certain DBPAM which is robust in the presence of salt and pepper noise. In the
future, we plan to investigate further the properties the CLPAMs, including the DBPAM
models. Furthermore, we intent to apply these novel models of AMs in the reconstruction
problem of gray-scale images corrupted by salt and pepper noise.
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