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Abstract. We propose an algorithm based on the computational method of Constrained
Constructive Optimization for construction of a geometric model of vascular arteriovenous
tree. It uses physiological conditions for pressure and flow while minimizing the total in-
travascular volume. We apply the algorithm to construct a geometric model of renal vascular
system. The results show that our model has morphometric properties similar to real renal
arterial and venous trees.
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1 Introduction

In order to study blood circulation, we need to construct geometric models of vascular
trees. There are different methods to construct these models. For example, we can use
fractal methods [8, 15] or optimization methods like Constrained Constructive Optimiza-
tion (CCO) [4,11,12]. Over the last year, new adaptations of CCO were proposed [1,2,7].

Given a perfusion domain, the main goal of the CCO method and its variants is to
construct only one vascular tree, which could be either arterial or venous. However, in
many regions of human body we have coupled arterial and venous trees.

In this work our goal is propose an algorithm based on CCO to construct two or more
vascular trees, given a 3D perfusion volume not necessarily convex, that share their distal
ends of vascular terminal segments. The constructed trees do not have vascular segments
intersecting each other. The first description of this algorithm was given by Queiroz [9] and
its potential is verified here by constructing a geometric model of renal vascular system.

2 The algorithm

Lets assume that the geometric model of arteriovenous vascular system is composed by
two or more circulatory trees connected in their distal ends of vascular terminal segments.
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To construct that model we propose the Algorithm 1 based on CCO that considers each
circulatory tree t (t = 1, . . . , Ntrees) in the model following the conditions:

(i) It has binary ramification of vascular segments. Each segment is represented as a
rigid cylindrical tube, perfused at steady state and laminar flow conditions;

(ii) The hydrodynamic resistance Ri of each segment i is given by Poiseuille’s law [3]

Ri =
8ηli
πr4i

, (1)

where η is the viscosity of blood (we assume constant with η = 3.6 cP), li and ri are
the length and internal radius;

(iii) The pressure drop ∆pi along segment i is given by

∆pi = RiQi, (2)

where Qi is the blood flow;

(iv) Qtperf is the blood flow along root segment of tree t, Qtterm =
Qt

perf

Kterm
is the blood flow

along terminal segments, and Kterm is the number of terminal segments;

(v) The total pressure drop ∆pt along tree t is given by

∆pt = ptperf − ptterm, (3)

where ptperf is the perfusion pressure at proximal position xtprox of root segment of

tree t, and ptterm is the pressure at distal position of terminal segments;

(vi) At bifurcation the radius of parent segment (ri) and the radii of children segments
(rleft e rright) obey the Murray’s law [13]

rγi = rγleft + rγright, (4)

where γ is assumed constant during the tree construction;

(vii) The segments are constructed in order to minimize a target function (total volume
of tree) given by

V = π

Kterm∑
i=1

lir
2
i . (5)

Figure 1 illustrates the steps of Algorithm 1 used to construct a model with two
vascular trees (Ntrees = 2), each one with two terminal segments (Nterm = 2).

Some comments about the steps of Algorithm 1:

• The value of Ntrees can be arbitrary. For the renal vascular system Ntrees = 2.
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(a) (b) (c)

Figure 1: Construction of arterial tree (red) and venous tree (blue) models. (a) Connecting xinew

with x1
prox and x2

prox. (b) Connecting xinew with x1
ibif and x2

ibif . (c) Optimizing x1
ibif and x2

ibif .

Algorithm 1: Automatic construction of an arteriovenous vascular system.

Input: xtprox, Qtperf , Nterm, ptperf , ptterm, γ, Ntrees.

1 Set the proximal position xtprox of the root segments in perfusion domain;

2 Generate and validate the root segments terminal position xinew;
3 for t← 1 to Ntrees do
4 Connect xinew to xtprox (Add root segment in tree t);

5 Kterm = 1;
6 while ( Kterm < Nterm)
7 Generate and validate new terminal segment distal position xinew;
8 Connect xinew to a segment in tree t creating new bifurcation position xtibif ;

9 Adjust xtibif in order to minimize the target function;

10 Kterm = Kterm + 1;

• At lines 2 and 7 the generated position xinew is valid if it follows a distance criterion
[9, 11] considering all segments of tree t (otherwise another position is generated);

• At line 8 when we connect xinew to a segment in tree t, we create a new bifurcation
position xtibif . This position has to be adjusted in order to minimize the target
function (5). The detailed description of this minimization process is presented
in [9].

3 Results

In this section we discuss the Algorithm 1 applied to construct a geometric model of
the renal arteriovenous system, which is formed by two trees.

The parameters used in our implementation are presented in Table 1 and they can
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be seen in [5]. The proximal position of the root segment for each tree was determined
from the vascular network model in AnatomiumTM [6] and the main branches of the
tree presented in [5]. The perfusion domain surface representing the kidneys was also
determined from [6].

Table 2 shows the morphometric data for the model trees. The value nmax shows
the maximum bifurcation, i.e., the maximum number of proximal bifurcations along the
path from the respective segment to the root segment. We denote the arterial tree as AT
and the venous tree as VT. The mean and standard deviation were calculated from 10
generated models. It is important to notice that the root segment radius (riroot) for AT
and VT are consistent with real renal vascular trees. As we can see in [10, 14], the real
renal arterial tree has a root segment radius from 2 mm to 6 mm and the real renal venous
tree has a root segment radius from 5 mm to 7 mm. It is also consistent with real renal
vascular trees whose the root segment radius and the intravascular volume (V) for VT are
greater than those values for AT.

An example of renal vascular tree model generated by Algorithm 1 is illustrated in
Figure 2. The arterial tree (red) and venous tree (blue) were separated for better visual-
ization. This model is consistent with real renal vascular system, whose vascularization is
concentrated at the kidney’s parenchyma, i.e. the functional parts of this organ.

In Figure 3 we show the morphometric curves relating the mean segment diameter and
the range of diameters (i.e. their S.D.) with bifurcation level. These curves have a decay
behavior like in experimental data from vascular corrosion casting [16].

Table 1: Parameters used in the renal vascular tree model.

Parameter Arterial tree Venous tree

ptperf (mmHg) 95 10

ptterm (mmHg) 15 5

Qtperf (mL/min) 617.5 617.5

Nterm 3200 3200

γ 2.2 2.2

Table 2: Morphometric data for the renal vascular tree model.

Tree riroot (mm) V (mm3) nmax

AT 2.0900± 0.0019 720.0206± 6.6782 44± 2

VT 4.0862± 0.0106 2797.5518± 23.1052 48± 4
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Renal vascular tree model Arterial tree Venous tree

Figure 2: Renal vascular tree model. (Adapted from [9].)
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Figure 3: Morphometric curves relating the mean segment diameter with bifurcation level.

(Adapted from [9].) (a) Arterial tree. (b) Venous tree.

4 Conclusion and future work

In this work we verify the potential of an algorithm based on CCO to construct a
geometric model of vascular arteriovenous system. We applied this algorithm to construct
a renal vascular tree model with two circulatory trees. The model has morphometric
properties consistent with real renal vascular tree.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 6, n. 2, 2018.

DOI: 10.5540/03.2018.006.02.0257 010257-5 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.02.0257


6

As future work we will intend to apply the proposed algorithm to construct a liver
vascular tree model that is composed by more than two circulatory trees.
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