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In this paper, we review three discrete-time complex-valued Hopfield neural networks (CvMHNNs)
proposed recently in the literature. Contrary to what has been stated, we provide examples in which
the sequences produced by these CvMHNN fails to converge under the usual conditions on the
synaptic weight matrix, that is, the synaptic weight matrix is hermitian with non-negative diagonal
elements. Furthermore, we present one CvMHNN model that always settle down to a stationary
state under the usual conditions on the synaptic weights.

1 Introduction

The Hopfield neural network (HNN) is one of the most important neural networks conceived for
the storage and recall of bipolar vectors [5]. According to the neural network terminology, the
discrete-time bipolar HNN is a single layer fully-connected recurrent neural network with hard-
limiting neurons [3]. Despite the limited representational capability of single-layer recurrent neu-
ral network with hard-limiting neurons [2], the HNN has been successfully applied for computer
vision modeling, signal reconstruction, image analysis, and optimization [4, 10]. It turns out, how-
ever, that most applications of the HNN require that the network yields a convergent sequence for
any initial state. For this reason, there is a vast literature on the stability analysis of HNNs [6, 11].

Besides the widely used hard-limiting neurons, complex-valued neurons offer an advantageous
representation of information [1, 6, 11]. For instance, a complex-valued neuron can appropriately
treat phase and the information contained in phase. In particular, a complex-valued multistate
neuron with K states generalizes the bipolar hard-limiting neuron by yielding one of the K-th
power roots of one. A Hopfield neural network with such neurons is referred to as a complex-
valued multistate Hopfield neural network (CvMHNN) [6].

As far as we know, CvMHNNs have been extensively studied since the early 1990s [1]. One
of the most important contribution on CvMHNNs is the paper of Jankowski et al. [6]. Mistak-
enly, Jankowski et al. stated that a CvMHNN, operating asynchronously, always settle down at
an equilibrium state if the synaptic weight matrix satisfies the usual conditions: the matrix is her-
mitian (wij = w̄ji) with non-negative diagonal (wii ≥ 0). In 2014, however, Zhou and Zurada
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showed that the CvMHNN of Jankowski et al. may fail to yield a convergent sequence if wii = 0
[11]. Inspired by the theoretical findings of Zhou and Zurada, in this paper we show that three
CvMHNN models introduced by Kobayashi in the last years may also fail to settle down at an
equilibrium state [7, 8, 9]. Furthermore, as pointed out by Zhou and Zurada, the condition wii = 0
is often used in applications of the CvMHNN. For instance, some design methods to implement an
associative memory using CvMHNN, including the generalized projection rule, requires wii = 0.
In the light of this remark, in this paper we propose a slight variation of the CvMHNN which,
operating in the asynchronous update mode, always settle down to at a stationary state under the
usual conditions on the synaptic weight matrix.

This paper is organized as follows: Next section presents some general concepts relative to
CvMHNNs. In Section 3 we review the models proposed by Kobayashi and, contrary to what has
been stated, we provide examples in which they fail to settle down to a stationary state. A slight
variation of the CvMHNN which yields a convergent sequence for any initial state is proposed in
Section 4. We finish the paper with some concluding remarks at Section 5.

2 Complex-Valued Multistate Hopfield Neural Networks

Let S = {s0, s1, . . . , sK−1} ⊂ C be the set of all possibleK states of a complex-valued multistate
neuron. Also, let us consider discrete-time CvMHNNs composed byN complex-valued multistate
neurons, whose dynamic is given as follows. Given a initial state vector x(0) ∈ SN , we recursively
define a sequence {x(t)}t≥0 using an asynchronous update model. Specifically, the next vector
x(t+ ∆t) is obtained by updating the ith neuron as follows

xi(t+ ∆t) =

{
f
(
vi(t)

)
, vi(t) ∈ D,

xi(t), otherwise,
(1)

where f is a complex-valued function from D ⊂ C to S ⊂ C and

vi(t) =

N∑
j=1

wijxj(t), (2)

is the activation potential of the ith neuron at iteration t. Here, wij ∈ C denotes the jth synaptic
weight of the ith neuron.

Remark 1. Like the original Hopfield neural network [5], we assume that a CvMHNN are updated
randomly and in an asynchronous manner, i.e., a single neuron is randomly selected and updated
according to (1).

Usually, the direct method of Lyapunov is used to ensure the convergence of the sequence
{x(t)}t≥0 produced by a CvMHNN. In mathematical terms, we must find a real-valued energy
function E : SN → R which is bounded and decreasing along any non-stationary trajectory, i.e.,
the inequality

∆E(x(t)) = E(x(t+ ∆t))− E(x(t)) < 0, (3)
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must holds true whenever x(t + ∆t) 6= x(t). In this case, we know that the time evolution of a
CvMHNN yields a minimum value ofE. Equivalently, the network comes to rest at an equilibrium
state [5]. The energy function given by

E(x) = −1

2

n∑
i=1

n∑
j=1

x̄iwijxj , (4)

where x̄ denotes the complex conjugate of x, is predominantly used for the analysis of the stability
of a CvMHNN [6, 7, 8, 9].

3 The CvMHNN Models of Kobayashi

Consider an integer number K > 1, referred to as the resolution factor, and define the angle
∆θ = π/K, called phase-quanta. In [9], Kobayashi introduces a complex-valued multistate
activation function, which we denote here by csgn1. This function has domain C∗ and co-domain
the set

S1 = {1, e2i∆θ, e4i∆θ, . . . , e2(K−1)i∆θ}. (5)

Formally, csgn1 is defined by

csgn1(z) =



1, 0 ≤ arg(z) < ∆θ,

e2i∆θ, ∆θ ≤ arg(z) < 3∆θ,
...

...
e2(K−1)i∆θ, (2K − 3)∆θ ≤ arg(z) < (2K − 1)∆θ

1, (2K − 1)∆θ ≤ arg(z) < 2π.

(6)

The evolution equation of the CvMHNN model proposed in [9] is based on (1) using f = csgn1.
We would like to point out, however, that Kobayashi does not address the case vi(t) = 0.

Possibly unaware of the stability issues of CvMHNN, Kobayashi states – without presenting a
formal proof – that the energy function given by (4) always decreases assuming an asynchronous
update mode and the usual conditions on the synaptic weights. The following example, however,
shows that this statement is not true.

Example 1. Let K = 2. Note that, in this case, the network admits only the following four states:

x1 = [1, 1]T , x2 = [−1, 1]T , x3 = [1,−1]T , and x4 = [−1,−1]T . (7)

Consider the synaptic weight matrix given by

W =

[
0 i
−i 0

]
∈ C2×2. (8)

Starting at any of the four states, the network yields a random walk at the diagram depicted in
Figure 1a). For instance, the probability of changing from the state x1 to x2 is 1/2, which corre-
sponds to the probability of selecting the first neuron to be updated. In fact, if x(t) = x1 and the
first neuron is chosen to be updated, we obtain v1(t) = i and x1(t+∆t) = −1. Since there always
exists a fifty percent probability to change states, the sequence given by (1) with f ≡ csgn1 does
not converge.
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a) CvMHNN of Example 1.
b) CvMHNN of Example 2
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Figure 1: Diagram representing the Markov process of CvMHNN models.

In [7], Kobayashi introduces a second activation function that corresponds to a slight modifi-
cation of csgn1. We denote this second activation function by csgn2. Like the function csgn1, the
domain of csgn2 is C∗, but the co-domain is the set S2 = {ei∆θ, e3i∆θ, . . . , e(2K−1)i∆θ}. Formally,
we have

csgn2(z) =


ei∆θ, 0 ≤ arg(z) < 2∆θ,

e3i∆θ, 2∆θ ≤ arg(z) < 4∆θ,
...

...
e(2K−1)i∆θ, 2(K − 1)∆θ ≤ arg(z) < 2π.

(9)

Note that the activation function csgn2 can be obtained from csgn1 using rotations by half of the
phase-quanta. Precisely, we have

csgn2(z) = φ−1
(

csgn1

(
φ(z)

))
, ∀z ∈ C∗, (10)

where φ : C → C is the clockwise rotation map φ(z) = e−i∆θ/2z and φ−1(z) = ei∆θ/2z is its
inverse. Follows from (10) that the CvMHNN models given by (1) using f ≡ csgn1 and f ≡ csgn2

are equivalent. In particular, contrary to what have been stated in [7], we cannot ensure that the
CvMHNN with f ≡ csgn2 will always settle down at an equilibrium state.

Finally, a third activation function, which we shall denote by csgn3, is introduced by Kobayashi
in [8]. In mathematical terms, the activation function csgn3 : C∗ → S1 is defined as follows using
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a certain probability p in a Bernoulli trial:

csgn3(z) =



1, 0 ≤ arg(z) < ∆θ,{
1, with probability p

e2i∆θ, with probability 1− p

}
, arg(z) = ∆θ

e2i∆θ, ∆θ < arg(z) < 3∆θ,
...

...
e2(K−1)i∆θ, (2K − 3)∆θ < arg(z) < (2K − 1)∆θ{
e2(K−1)i∆θ, with probability p

1, with probability 1− p

}
, arg(z) = (2K − 1)∆θ

1, (2K − 1)∆θ < arg(z) < 2π.
(11)

Note that csgn3 differs from csgn1 if arg(z) = (2k − 1)∆θ for some k = 1, . . . ,K. Precisely, a
random draw is carried out if arg(z) = (2k − 1)∆θ, for k ∈ {1, . . . ,K}, and the function csgn3

rotates either clockwise or counterclockwise to yield an element of S1 given by (5). Moreover, in
the deterministic case in which p = 0, we have csgn3 ≡ csgn1. Despite been a stochastic process
when 0 < p < 1, a CvMHNN defined by (1) with f ≡ csgn3 may fail to settle at an equilibrium
state. The following example illustrates this remark.

Example 2. Consider the synaptic weight matrix W ∈ C2×2 given by (8) and the resolution
factor K = 2. In this case, the network admits only the following four states: x1 = [1, 1]T ,
x2 = [−1, 1]T , x3 = [1,−1]T , and x4 = [−1,−1]T . Starting at any of these four states, the
network yields a random walk at the diagram depicted in Figure 1b). For instance, the probability
of changing from the state x1 to x3 is p/2, which corresponds to the probability to obtain x2(t +
∆t) = −1. Now, the probability to select the second neuron is 1/2 and the probability to obtain
csgn(−i) = 1 is p. Thus, we have Pr[x2(t + ∆t) = −1] = p/2. Since there always is a fifty
percent probability to change states, the sequence given by (1) with f ≡ csgn3 does not converge.

4 Modified CvMHNN and its stability analysis

Let us now introduce an activation function, denoted by csgnr, for which a CvMHNN always
settles down at an stationary state in an asynchronous update mode under the usual conditions on
the synaptic weights. Basically, the activation function csgnr is a restriction of both csgn1 and
csgn3 to the set

R = {z ∈ C∗ : arg(z) 6= (2k − 1)∆θ,∀k = 1, . . . ,K}. (12)

Formally, the activation function csgnr : R→ S1 is defined by

csgnr(z) =



1, 0 ≤ arg(z) < ∆θ,

e2i∆θ, ∆θ < arg(z) < 3∆θ,
...

...
e2(K−1)i∆θ, (2K − 3)∆θ < arg(z) < (2K − 1)∆θ

1, (2K − 1)∆θ < arg(z) < 2π.

(13)
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Note that csgnr is not defined for a complex number z such that arg(z) = (2k − 1)∆θ, k ∈
{1, 2, . . . ,K}. Therefore, the neuron of a CvMHNN given by (1) with f ≡ csgnr is updated at
time t if and only if arg(vi(t)) 6= (2k − 1)∆θ for some k ∈ {1, 2, . . . , }. The following theorem
address the stability of the new CvMHNN model.

Theorem 1. The sequence defined by (1) with f(·) = csgnr(·) is convergent for any initial state
x in an asynchronous update mode if the weights satisfy wji = w̄ij and wii ≥ 0.

Proof. Clearly, the energy function defined by (4) is real-valued and bounded from below. Let us
show that ∆E = E(x′) − E(x) < 0 if x ≡ x(t) and x′ ≡ x(t + ∆t) for some t ≥ 0. Since we
have assumed an asynchronous update mode, only the µth neuron changes its state at iteration t.
In other words, we have x′µ 6= xµ but x′j = xj for all j 6= µ. Moreover, we know that wµµ is a
real number and |xµ| = |x′µ| = 1. Thus, we have x̄µwµµxµ = x̄′µwµµx

′
µ = wµµ and the variation

of the energy function is

∆E = E(x′)− E(x) = −1

2

∑
j 6=µ

(x̄′µ − x̄µ)wµjxj +
∑
i 6=µ

x̄iwiµ(x′µ − xµ)

 .
Recall that the conjugate of

∑
i 6=µ x̄iwiµ(x′µ − xµ) is

∑
j 6=µ(x̄′µ − x̄µ)wµjxj because wij = w̄ji.

Also, the activation potential of the µth neuron at iteration t is vµ =
∑n

j=1wµjxj . Hence, we have

∆E = −Re

(x̄′µ − x̄µ)
∑
j 6=µ

wµjxj

 = −Re
{

(x̄′µ − x̄µ)(vµ − wµµxµ)
}

= −T1 − T2,

where T1 = Re
{
x̄′µvµ

}
− Re {x̄µvµ} and T2 = wµµRe

{
1− xµx̄′µ

}
. From the Cauchy-Schwarz

inequality, we derive Re
{
xµx̄

′
µ

}
= xµ0x

′
µ0

+ xµ1x
′
µ1
< |xµ||x′µ| = 1 because x′µ and xµ are not

parallel vectors in R2. As a consequence, the inequality Re
{

1− x̄µx′µ
}
> 0 holds true and, since

wµµ ≥ 0, we conclude that T1 = wµµRe
{

1− xµx̄′µ
}
≥ 0. Let us now show that T2 ≥ 0. We

know that vµ = |vµ|eiα ∈ R and xµ = eiθ 6= x′µ = csgnr(vµ) = eiθ
′
. Thus, we have

Re
{
x̄′µvµ

}
= |vµ|Re

{
e−iθ

′
eiα
}

= |vµ|Re
{
ei(α−θ

′)
}

= |vµ| cos(α− θ′) = |vµ| cos(|α− θ′|).

Similarly, we derive Re {x̄µvµ} = |vµ| cos(|α − θ|). From the definition of csgnr, however, we
have |α − θ′| < ∆θ while |α − θ| > ∆θ. Then, |α − θ′| < |α − θ| and cos(|α − θ′|) >
cos(|α − θ|). Consequently, |vµ| cos(|α − θ′|) > |vµ| cos(|α − θ|) which implies the inequality
T1 = Re

{
x̄′µvµ

}
− Re {x̄µvµ} > 0. Concluding, since both T1 > 0 and T2 ≥ 0, we have

∆E = −T1 − T2 < 0 whenever xµ(t+ ∆t) 6= xµ(t) for some index µ ∈ {1, 2, . . . , N}.

5 Conclusions and Remarks

In this paper, we reviewed Hopfield neural network models whose neuron states reside in a finite
set of unit complex numbers. Specifically, we focused our attention on the complex-valued multi-
state Hopfield neural networks (CvMHNNs) introduced recently by Kobayashi [7, 8, 9]. Precisely,
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we pointed out that these CvMHNN models do not always settle down at an equilibrium state. In
addition, we proposed a new activation function csgnr which is obtained by restricting the domain
of the activation functions of Kobayashi to the set R defined by (12). We proved that a CvMHNN
with the function csgnr always settle down to an equilibrium state under the usual conditions for
any initial state.
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