
Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics

A Methodology to Find Relations between Invariants of n

Symmetric Second-Order Tensors

Adair Roberto Aguiar1

Interunity Graduate Program in Bioengineering - EESC/FMRP/IQSC, USP, São Carlos, SP

Department of Structural Engineering - SET/EESC, USP, São Carlos, SP

Gabriel Lopes da Rocha2

Interunity Graduate Program in Bioengineering - EESC/FMRP/IQSC, USP, São Carlos, SP

Resumo. A methodology is proposed to find either implicit or explicit relations between
invariants in a minimal integrity basis for n symmetric second-order tensors defined on a
three-dimensional euclidean space. The implicit relations are called syzygies. In particular,
the methodology i) allows the construction of a set of 6n − 3 independent invariants, ii)
yields explicit non-polynomial expressions for certain invariants in terms of the remaining
invariants in the integrity basis, and iii) allows the construction of syzygies. The results of
this investigation are important in the modeling of biological structures, which, in general,
are non-homogeneous and made of anisotropic viscoelastic materials that are subjected to
large deformations.
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1 Introduction

The application of invariance principles in continuum mechanics leads to the proposi-
tion of constitutive relations that depend on a list of invariants of physical variables, such
as vectors and second-order tensors. Given a group of transformations acting on these
variables, the central problem of the associated theory of invariants is to find a list of
invariants from which all the other invariants can be generated without having redundant
members. In the context of this work, where the invariants are polynomials of their argu-
ments, we call this list an integrity basis if any polynomial invariant can be expressed as
a polynomial of the members in the list. The integrity basis is minimal if it contains the
smallest possible number of members. These members may, however, satisfy polynomial
relations called syzygies, which do not allow any one invariant in these relations to be
expressed in terms of the other invariants.

The construction of minimal integrity bases in continuum mechanics has been the
subject of intense investigation since the 1950s, an account of which can be found in

1aguiarar@sc.usp.br
2gabrielmat04@hotmail.com

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 6, n. 2, 2018.

Trabalho apresentado no XXXVIII CNMAC, Campinas - SP, 2018.

DOI: 10.5540/03.2018.006.02.0245 010245-1 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.02.0245


2

Spencer [7], and is, by now, well established. The determination of the number of syzygies
in a minimal integrity basis together with the construction of these syzygies is, however,
an active area of research. See, for instance, Shariff [5] and Shariff et al. [6].

Spencer [7] has constructed the minimum integrity basis for a finite number n of sym-
metric tensors defined on the three-dimensional euclidean space, but has not determined
the number of independent invariants of this basis. In this work we propose a methodology
that i) allows the construction of a set of 6n− 3 independent invariants, ii) yields explicit
non-polynomial expressions for certain invariants in terms of the remaining invariants in
the integrity basis, and iii) allows the construction of syzygies. These results have impor-
tant applications in modeling the mechanical response of viscoelastic polymer composites
( [3]), fiber-reinforced composites ( [1]), and biomaterials ( [2]).

2 The Methodology

Let us consider that all the symmetric tensors in the set {A(1),A(2), . . . ,A(n)}, where
n ≥ 1 have three distinct eigenvalues and that any two tensors in this set do not have
parallel eigenvectors. If {e1, e2, e3} is the set of eigenvectors of A(1) with associated
eigenvalues (λ1, λ2, λ3), we write

A(1) =

3∑
i=1

λi ei ⊗ ei , A(r) =

3∑
i=1

3∑
j=1

β
(r)
ij ei ⊗ ej for r = 2, . . . , n , (1)

where β
(r)
ij

def
= ei ·A(r)

ij ej , i, j = 1, 2, 3, are the six components of the tensor A(r) in the basis
{e1, e2, e3}. It is then clear from (1) that the maximum number of distinct components
of all the tensors in the set {A(1),A(2), . . . ,A(n)} is 6n− 3.

To present the methodology mentioned in Section 1, we investigate the cases n = 1, 2, 3,
and then generalize for n > 1.

2.1 The Case n = 1

Claim: All 3 classical invariants are independent.

Proof: The three invariants

I11
def
= trA(1) , I12

def
= tr (A(1))2 , I13

def
= tr (A(1))3 (2)

depend on the three eigenvalues λi, i = 1, 2, 3, which are independent variables. In addi-
tion, these variables are roots of the characteristic equation having the form λ3 − J1 λ

2 +
J2 λ−J3 = 0, where J1

def
= I11 , J2

def
=

[
(I11 )

2 − I12
] /

2 , J3
def
= detA(1) =

(
I13 − I11 I

1
2 + I11 J2

) /
3 .

It is well known that this characteristic equation yields three real-valued expressions for
λ in terms of the invariants Ji, i = 1, 2, 3, and, in view of (2), in terms of the invariants
I1i , i = 1, 2, 3. Thus, the three invariants in (2) are independent.
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2.2 The Case n = 2

Claim: 9 of the 10 classical invariants are independent.

Proof: In addition to the 3 invariants in (2), the minimal integrity basis for 2 sym-
metric tensors, presented by Spencer [7], contains the invariants

I21
def
= trA(2) , I22

def
= tr (A(2))2 , I23

def
= tr (A(2))3 , I121

def
= trA(1)A(2),

I122
def
= tr (A(1))2A(2), I123

def
= trA(1) (A(2))2, I124

def
= tr (A(1))2 (A(2))2. (3)

Let βij
def
= ei ·A(2)

ij ej , i, j = 1, 2, 3 , where we recall from (1) that ei is an eigenvector of

the tensor A(1). Clearly, the tensors A(1) and A(2) are uniquely determined by the nine
components λi , βij , i, j = 1, 2, 3, and, therefore, the ten invariants in both (2) and (3) are
given in terms of these components.

In fact, it is not difficult to show that each invariant in the set Ψ
def
= {I11 , I12 , I13 , I21 , I22 , I23 ,

I121 , I122 , I123 , I124 } can be expressed as a polynomial of elements in the set Ω = {λ1, λ2, λ3,
β11, β22, β33, β

2
12, β

2
23, β

2
13, β12 β23 β13}. In fact, there is a bijection between the sets Ψ and

Ω. To show this, we only need to express the elements of Ω in terms of the elements of Ψ.

Thus, given that the elements of Ψ are known, we obtain the elements of Ω by following
the steps below.

a) In view of Section 2.1, the components λ1, λ2, λ3 are given in terms of the invariants
I11 , I

1
2 , I

1
3 .

b) The components β11, β22, β33 are obtained from the solution of a system of linear equa-
tions obtained from the expressions of I21 , I

12
1 , I122 , where λ1, λ2, λ3 were determined

in Step a).

c) The terms β2
12, β

2
23, β

2
13 are obtained from the solution of a system of linear equations

obtained from the expressions of I22 , I
12
3 , I124 , where λi, βii, no sum on i = 1, 2, 3,

were determined in steps a) and b).

d) The term β12 β23 β13 is obtained from the expression of I23 , where the other terms in
this expression were determined in the previous steps.

In this way, we have shown that there is a bijection between the sets Ψ and Ω.

Since

(β12 β13 β23)
2 = β2

12 β
2
13 β

2
23 (4)

and since the integrity basis is minimal and contains the 10 invariants given by both (2)
and (3), it follows from steps a) – d) above that the relation (4) yields a syzygy between
the invariants. Since the elements of the set Ω\{β12 β23 β13} are independent, the claim is
proved.

The results of this section were obtained by Rocha and Aguiar [4] and are included
here for completeness of presentation. Shariff et al. [6] have obtained similar results by
using a different approach.
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2.3 The Case n = 3

Claim: 15 of the 28 classical invariants are independent.

Proof: In addition to the 10 invariants in the expressions (2) and (3), the integrity
basis for 3 symmetric tensors, presented by Spencer [7], also have the invariants

I31
def
= trA(3) , I32

def
= tr (A(3))2 , I33

def
= tr (A(3))3 , I131

def
= trA(1)A(3),

I132
def
= tr (A(1))2A(3), I133

def
= trA(1) (A(3))2, I134

def
= tr (A(1))2 (A(3))2 ,

I231
def
= trA(2)A(3), I232

def
= tr (A(2))2A(3), I233

def
= trA(2) (A(3))2, (5)

I234
def
= tr (A(2))2 (A(3))2, I1231

def
= trA(1)A(2)A(3), I1232

def
= tr (A(1))2A(2)A(3),

I1233
def
= trA(1) (A(2))2A(3), I1234

def
= trA(1)A(2) (A(3))2, I1235

def
= tr (A(1))2 (A(2))2A(3),

I1236
def
= tr (A(1))2A(2) (A(3))2, I1237

def
= trA(1) (A(2))2 (A(3))2 .

Let γij
def
= ei ·A(3)

ij ej , i, j = 1, 2, 3 . As in Section 3.2, the tensors A(i), i, j = 1, 2, 3, are
uniquely determined by the 15 components λi , βij , γij , i, j = 1, 2, 3, and, therefore, the 28
invariants in (2), (3), and (5) are given in terms of these components.

Here, the set of invariants is given by Ψ = {Ipi , I
q
j , I

123
k }, i, p = 1, 2, 3, j = 1, . . . , 4,

q = 12, 23, 13, k = 1, . . . , 7, and the set of terms in Ω will be constructed by following the
steps below.

a) Following the steps a) thru d) in Section 3.2, it is not difficult to see that there is
a bijection between the set of 17 invariants given by Ψa = {Ipi , I

q
j }, i, p = 1, 2, 3,

j = 1, . . . , 4, q = 12, 13, and the set of 17 terms given by Ωa = {λi, βii, γii, β
2
ij , γ

2
ij ,

β12 β23 β13, γ12 γ23 γ13}, no sum on i, j = 1, 2, 3, j > i.

Of course, not all the terms in the set Ωa are independent. In fact, the terms
β12 β23 β13, γ12 γ23 γ13 yield 2 relations, given by both the relation (4) and

(γ12 γ23 γ13)
2 = γ212 γ

2
23 γ

2
13 . (6)

b) It is not difficult to show that each invariant in the set Ψb = {I231 , I1231 , I1232 } can be
expressed as a polynomial of elements in the set Ωb = {β12 γ12, β13 γ13, β23 γ23}. In
fact, there is a bijection between the sets Ψb and Ωb.

Here, the terms in Ωb yield the 4 relations

(β12 γ12)
2 = β2

12 γ
2
12 , (β13 γ13)

2 = β2
13 γ

2
13 , (β23 γ23)

2 = β2
23 γ

2
23 ,

(β12 γ12) (β23 γ23) (β13 γ13) = (β12 β23 β13) (γ12 γ23 γ13) , (7)

where β2
ij , γ

2
ij , i = 1, 2, 3, j > i, β12 β23 β13, and γ12 γ23 γ13 were obtained in Step a).
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c) It is not difficult to see that the invariants in the set Ψc = {I232 , I1233 , I1235 }∪{I233 , I1234 ,
I1236 } are given in terms of the elements in the set Ωc = {β12 β13 γ23, β13 β23 γ12,
β23 β12 γ13} ∪ {β12 γ13 γ23, β13 γ23 γ12, β23 γ12 γ13}. We have verified that, conversely,
the elements in the set Ωc can be given in terms of the invariants in the set Ψc.

Here, the terms in Ψc yield the 13 relations

(β12 β13 γ23)
2 = β2

12 β
2
13 γ

2
23 (∗) , (β12 γ13 γ23)

2 = β2
12 γ

2
13 γ

2
23 (∗) ,

(β12 β13 γ23) (β13 β23 γ12) (β23 β12 γ13) = β2
12 β

2
13 β

2
23 (γ12 γ23 γ13) ,

(β12 γ13 γ23) (β13 γ23 γ12) (β23 γ12 γ13) = γ212 γ
2
13 γ

2
23 (β12 β23 β13) , (8)

(β12 β13 γ23) (β13 β23 γ12) (β23 β12 γ13) = (β12 γ12) (β23 γ23) (β13 γ13) (β12 β23 β13) ,

(β12 γ13 γ23) (β13 γ23 γ12) (β23 γ12 γ13) = (β12 γ12) (β23 γ23) (β13 γ13) (γ12 γ23 γ13) ,

(β12 γ13 γ23) (β13 β23 γ12) = (β12 β23 β13) (γ12 γ23 γ13) (∗) ,

where (∗) means cyclic permutation of the indexes in the expression (i.e., 12 →
23 → 31 (or, 13) → 12) and β2

ij , γ
2
ij , i, j = 1, 2, 3, j > i, β12 β23 β13, γ12 γ23 γ13 were

obtained in Step a) and β12 γ12, β13 γ13, β23 γ23 were obtained in Step b).

d) Observe from the sets Ωa, Ωb, and Ωc that all possible combinations between the
components of the tensors were considered. Thus, the two remaining invariants, I234
and I1237 , are given in terms of these combinations, which, by their turn, are given

in terms of the invariants in the set Ψ
def
= Ψa ∪Ψb ∪Ψc.

In summary, observe from steps a) – d) that only 15 elements in the set Ω
def
= Ωa∪Ωb∪Ωc

are independent. They are the elements in the set ΩI
def
= Ωa\{β12 β23 β13, γ12 γ23 γ13}.

Since, by Step a), there is a bijection between ΩI and the set ΨI
def
= Ψa\{I23 , I33}, we

see that ΨI contains 15 independent invariants and the claim is proved. All the other
invariants depend on these invariants through either explicit expressions discussed in Step
d) or syzygies obtained from the relations (4) and (6) thru (8).

2.4 The General Case of n > 1

Claim: 6n−3 of the numerous classical invariants in an n-minimal integrity basis are
independent.

Proof: The components of the n tensors in the set {A(1),A(2), . . . ,A(n)}, which appear

in (1), yield the set ΩI = {λi, β
(r)
ii , (β

(r)
ij )2}, no sum on i, j = 1, 2, 3, j > i, r = 2, . . . , n.

The elements of this set are clearly independent and yield the 6n− 3 invariants in the set
ΨI = {I11 , I12 , I13 , Ir1 , Ir2 , I1ri }, i,= 1, . . . , 4, r = 2, . . . , n, where these invariants are defined
by

Is1
def
= trA(s) , Is2

def
= tr (A(s))2 , Is3

def
= tr (A(s))3 , I1r1

def
= trA(1)A(r),

I1r2
def
= tr (A(1))2A(r), I1r3

def
= trA(1) (A(r))2, I1r4

def
= tr (A(1))2 (A(r))2, (9)
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where s = 1, 2, . . . , n. Following the arguments of Step a) in Case n = 3, it is not
difficult to see that there is a bijection between the sets ΩI and ΨI and, therefore, that
the invariants of ΨI are independent, establishing the proof of the claim.

These independent invariants can now be used to establish n − 1 syzygies from the
relations (

β
(r)
12 β

(r)
23 β

(r)
13

)2
=

(
β
(r)
12

)2 (
β
(r)
23

)2 (
β
(r)
13

)2
, r = 2, . . . , n , (10)

where the term β
(r)
12 β

(r)
23 β

(r)
13 is a polynomial of the invariants in the set ΨI ∪ {Ir3}, r =

2, . . . , n.
Next, following the arguments of Step b) in Case n = 3, we see that there are bijections

between the sets {Irs1 , I1rs1 , I1rs2 } and {β(r)
12 β

(s)
12 , β

(r)
13 β

(s)
13 , β

(r)
23 β

(s)
23 } for r, s = 2, . . . , n, s > r,

which allow to establish 2 (n− 1) (n− 2) relations having the forms given in (7).
Similarly, following the arguments of Step c) in Case n = 3, we see that there are bi-

jections between the sets {Irs2 , I1rs3 , I1rs5 }∪{Irs3 , I1rs4 , I1rs6 } and {β(r)
12 β

(r)
13 β

(s)
23 , β

(r)
13 β

(r)
23 β

(s)
12 ,

β
(r)
23 β

(r)
12 β

(s)
13 } ∪ {β(r)

12 β
(s)
13 β

(s)
23 , β

(r)
13 β

(s)
23 β

(s)
12 , β

(r)
23 β

(s)
12 β

(s)
13 } for r, s = 2, . . . , n, s > r, which

allow to establish 13 (n− 1) (n− 2)/2 relations having the forms given in (8).
Similarly to Step d) in Case n = 3, the invariants Irs4 and I1rs7 , given by (9.g) and an

expression similar to the last definition in (5), are expressed as combinations of the terms
introduced above, which, by their turn, are given in terms of the invariants also introduced
above.

Since the aim of this work is not to present a complete analysis of all possible relations
between the invariants, we leave this task for future work and, in the next section, present
conclusions that generalize the observations of Case n = 3.

3 Conclusions

The minimal integrity basis presented by Spencer [7] has the 6n − 3 independent
invariants in the set ΨI presented in Section 2.4. All the other invariants depend on these
invariants through either implicit or explicit relations, as discussed below.

Provided that all the eigenvalues of A(1) are distinct from each other, we can find
non-polynomial expressions for some of the invariants in terms of the remaining ones. We
then find a set having less invariants than the invariants in the minimal integrity basis.
The number of invariants in this set has only been determined for Case n = 3 and is equal
to 26.

The methodology introduced in this work yields relations between the components
of the tensors A(r), r = 1, . . . , n, which can be used to find syzygies for the invariants.
For Case n = 3, we have shown that these relations together with the 2 non-polynomial
expressions referred to above yield 21 relations.
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