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A Control Problem for a Heat Conducting Micropolar Fluid
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Abstract. We study an optimal control problem associated with the thermally coupled
micropolar fluid equations including solid media. The existence of optimal solutions is
proved. First order optimality conditions is studied, and an optimality system is derived.
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1 Introduction

Let Ω ⊂ R2 a bounded open set with boundary Γ, and suppose Ω consists of two disjoint
subdomains Ωf and Ωs where Ωf represent the fluid domain and Ωs the solid domain. The
boundary of Γ is considered as Γ = Γ1 ∪ Γ2 where Γ1 = Γ ∩ Ωf and Γ2 = Γ ∩ Ωs. Also,
∂Ωf = Γ1 ∪ Γ0 and ∂Ωs = Γ2 ∪ Γ0 where Γ0 = Ωf ∩ Ωs. Let u, w and p denote the
restriction of the velocity vector, the microrotational velocity and the pressure to the fluid
domain Ωf , respectively, since u ≡ 0 and w ≡ 0 in the solid domain Ωs. Let θ1 and θ2 the
restriction of the temperature to the fluid domain Ωf and solid domain Ωs, respectively;
which by continuity of temperature must satisfy the condition θ1 = θ2 on Γ0. Then, the
equations describing the motion of a viscous incompressible stationary micropolar fluid
with heat diffusion are given by

−(ν + νr)∆u+ u · ∇u+∇p+ αGθ1 = 2νrrotw + f in Ωf , (1)

−(ca + cd)∆w + u · ∇w + 4νrw = 2νrrotu+ g in Ωf , (2)

divu = 0 in Ωf , (3)

−κ1∆θ1 + u · ∇θ1 = h1 in Ωf , (4)

−κ2∆θ2 = h2 in Ωs, (5)

u = g1, w = 0 θ1 = η1 on Γ1, (6)

u = 0, w = 0 on Γ0, (7)

θ2 = η2 on Γ2, (8)

κ1
∂θ1

∂n1
+ κ2

∂θ2

∂n2
= 0 on Γ0, (9)
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where the functions f and g denote external forces actuating on the fluid. The functions h1

and h2 denote heat sources in the fluid domain Ωf and solid domain Ωs, respectively. The
function G is the gravity acceleration and α > 0 is a constant associated with the volume
expansion coefficient. The positive constants ν, νr, κ1 and κ2 represent the cinematic
viscosity of the fluid, the cinematic viscosity of microrotation, the thermic conductivity
coefficients in Ωf and Ωs, respectively. The positive constants ca and cd characterize
isotropic properties of the fluid, and are coefficients of angular viscosities; n1 and n2

denote the exterior unit normal vector to Ωf and Ωs, respectively, and satisfy n1 = −n2

on the interface Γ0. The functions g1, η1 and η2 are prescribed functions on the respective
boundary. More details of the model (1)-(4) can be seen in [4].

For the condition (9), it is introduced a new variable g2 such that

g2 = κ1
∂θ1

∂n1
, −g2 = κ2

∂θ2

∂n2
on Γ0. (10)

Since an arbitrary g2 does not guarantee the condition of continuity θ1 − θ2 = 0 on the
interface Γ0, we consider a problem control in which we want find optimal functions g1 and
g2 defined on Γ1 and Γ0, respectively; such that minimize the L2 distance of the difference
θ1 − θ2 along the interface Γ0.

In the case of the Boussinesq equations for natural convection with boundary conditions
g1 = 0 on Γ1, η1 = 0 on Γ1, η2 = 0 on Γ0 and (9), the existence of weak solutions has
been studied in [3]. An optimal control problem for the thermally coupled incompressible
Navier - Stokes equations by Neumann boundary heat control is considered in [2, 3].

In section 2 we present existence and uniqueness result for the state equations (1)-(9).
In section 3 deals with a boundary control problem that minimize ‖θ1 − θ2‖L2(Γ0). In
section 4 first order necessary optimality conditions are obtained.

2 Existence of Solutions

We consider Sobolev space H1(Ω) with the usual inner product and norm, and we define
the functions spaces H1

0 (Ω) = {w ∈ H1(Ω) : w = 0 on Γ} with norm ‖w‖H1
0

= ‖∇w‖L2 ,

Vf = {u ∈ H1
0(Ωf ) : divu = 0 in Ωf} with norm ‖u‖Vf

= ‖∇u‖L2 , W1 = {θ ∈ H1(Ωf ) :
θ = 0 on Γ1} with norm ‖θ‖W1 = ‖∇θ‖L2 , W2 = {ϑ ∈ H1(Ωs) : ϑ = 0 on Γ2} with norm
‖ϑ‖W2 = ‖∇ϑ‖L2 , H1

σ = {u ∈ H1(Ωf ) : divu = 0 in Ωf ,u · n = 0 on Γ1 ∪ Γ0} with norm
‖u‖H1

σ
= ‖u‖H1 . For Γk a connected subset of the boundary Γ, we define the trace spaces

H
1/2
0 (Γk) = {φ ∈ L2(Γσ) : ∃ φ̂ ∈ H1/2(Γ), φ̂|Γk

= φ, φ̂|Γ\Γk
= 0}, H

1/2
00 (Γk) = {u ∈ L2(Γσ) :

∃v ∈ H1/2(Γ),v|Γk
= u,v|Γ\Γk

= 0,
∫

Γk
u · ndΓ = 0}. Also, by simplicity we define the

product spaces H = H1
σ×H1

0 (Ωf )×H1(Ωf )×H1(Ωs),X = Vf ×H1
0 (Ωf )×W1×W2, with

the usual norms. The dual space of X is given by X′ = V′f ×H−1(Ωf )×W ′1 ×W ′2.

By using integration by part and (10), a weak formulation for the system (1)-(9) is:
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Find (u, w, θ1, θ2) ∈ H such that

ν1(∇u,∇ϕ) + (u · ∇u,ϕ) + α(Gθ1,ϕ) = 2νr(rotw,ϕ) + 〈f ,ϕ〉 ∀ϕ ∈ Vf , (11)

ν2(∇w,∇ψ) + (u · ∇w,ψ) + 4νr(w,ψ) = 2νr(rotu, ψ) + 〈g, ψ〉 ∀ψ ∈ H1
0 (Ωf ),(12)

κ1(∇θ1,∇φ) + (u · ∇θ1, φ) = 〈h1, φ〉+ (g2, φ)Γ0 ∀φ ∈W1, (13)

κ2(∇θ2,∇ξ) = 〈h2, ξ〉 − (g2, ξ)Γ0 ∀ξ ∈W2, (14)

u = ug1
on Γ1 ∪ Γ0, (15)

θ1 = η1 on Γ1, (16)

θ2 = η2 on Γ2, (17)

where ug1
= g1 on Γ1, ug1

= 0 on Γ0, ν1 = ν + νr and ν2 = ca + cd.
About the existence of solutions of the system (11)-(17) we have the following result.

Theorem 2.1. Let (f , g, h1, h2) ∈ X′,G ∈ L∞(Ωf ), g1 ∈ H
1/2
00 (Γ1), η1 ∈ H1/2

0 (Γ1) and

η2 ∈ H1/2
0 (Γ2). If ν1, ν2 and κ1 are large enough such that

δ = min{ν1 − 2νrC − C‖η1‖H1/2(Γ1), ν2 − 2νrC, κ1 − αC‖G‖∞, κ2} > 0

with C a positive constant, there exists at least one solution (u, w, θ1, θ2) ∈ H for the
problem (11)-(17). Moreover, the solution satisfies the following inequality

‖u‖H1
σ

+ ‖w‖H1
0

+ ‖θ1‖H1 + ‖θ2‖H1 ≤ C1Θ,

where C1 > 0 is a constant depending on ν1, νr, ν2, κ1, κ2 and δ, Θ > 0 is a constant de-
pending on ‖ug1

‖Γ1∪Γ0 , ‖η1‖H1/2(Γ1), ‖η2‖H1/2(Γ2), ‖G‖∞, ‖f‖V′f , ‖g‖H−1 , ‖h1‖W ′1 , ‖h2‖W ′2
and ‖g2‖L2(Γ0).

Proof. Follows by using the Lax-Milgram lemma and Leray-Schauder fixed point theorem.

About the uniqueness of the solution, a result is given in the following theorem.

Theorem 2.2. Under the conditions of the Theorem 2.1, if δ > C1Θ the solution of the
problem (11)-(17) is unique.

3 Boundary Control Problem

As controls spaces we consider the closed convex sets U1 ⊂ H
1/2
00 (Γ1) and U2 ⊂ L2(Γ0),

then the functions g = (g1, g2) ∈ U1 × U2 = Uad represent boundary controls, being g1 a
boundary control for the velocity on the part Γ1 of the boundary of Ωf and g2 a control
for the temperature on the interface Γ0 of the solid-fluid region. Also, is considered a
function ud ∈ L2(Ωf ) which represent a desired velocity for the fluid.

Denoting z = (u, w, θ1, θ2) ∈ H and g = (g1, g2) ∈ Uad, we establish the following
boundary control problem: Find (z, g) ∈ H× Uad such that minimize the functional

J(z, g) =
1

2
‖u− ud‖2L2(Ωf )

+
1

2
‖θ1 − θ2‖2L2(Γ0) +

β1

2
‖g1‖2H1/2(Γ1)

+
β2

2
‖g2‖2L2(Γ0)
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subject to (z, g) satisfying (11)-(17).

The constants β1 and β2 satisfy any of the following conditions:

(i) If β1 ≥ 0 and β2 ≥ 0, U1 and U2 are bounded closed convex sets. (18)

(ii) If β1 > 0 and β2 > 0, U1 and U2 are closed convex sets. (19)

To describe the constraints for the control problem, we define the space

Y = X′ ×H
1/2
00 (∂Ωf )×H1/2

0 (Γ1)×H1/2
0 (Γ2)

and we consider the constraint operator F = (F1, F2, F3, F4,F5, F6, F7) : H × Uad → Y,
such that in each point s = (z, g) ∈ H× Uad is defined by

〈F1(s),ϕ〉V′f = ν1(∇u,∇ϕ) + (u · ∇u,ϕ) + α(Gθ1,ϕ)− 2νr(rotw,ϕ)− 〈f ,ϕ〉V′f ,
〈F2(s), ψ〉H−1 = ν2(∇w,∇ψ) + (u · ∇w,ψ) + 4νr(w,ψ)− 2νr(rotu, ψ)− 〈g, ψ〉H−1 ,

〈F3(s), φ〉W ′1 = κ1(∇θ1,∇φ) + (u · ∇θ1, φ)− 〈h1, φ〉 − (g2, φ)Γ0 ,

〈F4(s), ξ〉W ′2 = κ2(∇θ2,∇ξ)− 〈h2, ξ〉+ (g2, ξ)Γ0 ,

F5(s) = u|Γ0∪Γ1
− ug1

, F6(s) = θ1|Γ1
− η1, F7(s) = θ2|Γ2

− η2,

for all (ϕ, ψ, φ, ξ) ∈ X.

Then, we reformulate the above control problem as: Find (z, g) ∈ H × Uad such that
minimize the functional

J(z, g) =
1

2
‖u− ud‖2L2(Ωf )

+
1

2
‖θ1 − θ2‖2L2(Γ0) +

β1

2
‖g1‖2H1/2(Γ1)

+
β2

2
‖g2‖2L2(Γ0) (20)

subject to F(z, g) = 0 in Y.

The admissible solutions set for the control problem (20) is defined by

Sad = {s = (z, g) ∈ H× Uad : J(s) <∞ and satisfies F(z, g) = 0}.

About the existence of solution for the control problem (20) we give the following result.

Theorem 3.1. Under the conditions of the Theorem 2.1, if Uad satisfies any of the con-
ditions (18)-(19), the control problem (20) has at least a solution s̄ = (z̄, ḡ) ∈ Sad.

Proof. By Theorem 2.1 the set Sad is not empty. Since J(s) is bounded below, exists a
minimizing sequence {sm = (um, wm, θm1 , θ

m
2 , g

m
1 , g

m
2 )}m≥1 ∈ Sad such that

lim
m→∞

J(sm) = inf
s∈Sad

J(s). (21)

Moreover, J(sm) < ∞ and sm satisfies the system (11)-(17), then by Theorem 2.1 we
obtain that {sm} is bounded in H × Uad, and since Uad is a closed and convex subset of

H
1/2
00 (Γ1)× L2(Γ0), exists s̄ ∈ H× Uad such that as m→∞, sm → s̄ weakly in H× Uad.

Moreover, taking into account that the embedding H1
σ ↪→ L2(Ωf ), H1

0 (Ωf ) ↪→ L2(Ωf ),
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H1(Ωf ) ↪→ L2(Ωf ), H1(Ωs) ↪→ L2(Ωs) and H
1/2
00 (Γ1) ↪→ L2(Γ1) are compact we deduce

that sm → s̄ strongly in L2(Ωf )× L2(Ωf )× L2(Ωf )× L2(Ωs)× L2(Γ1).
Then, by using the above convergences we can obtain that s̄ satisfies (11)-(17) and we

conclude that s̄ ∈ Sad, which implies

inf
s∈Sad

J(s) ≤ J(s̄). (22)

Since J is weakly lower semi-continuous on Sad we have that J(s̄) ≤ lim
m→∞

inf J(sm) and

then
J(s̄) ≤ lim

m→∞
J(sm). (23)

Now, from (21), (22) and (23) it follows that s̄ is a solution for the problem (20).

4 First Order Necessary Conditions

For the functional J and the constraint operator F of the problem (20), we have the
following results.

Lemma 4.1. The functional J is Fréchet differentiable with respect to s = (z, g) ∈
H × Uad. Moreover, at the arbitrary point s̃ = (z̃, g̃) ∈ H × Uad the Fréchet derivative of
J with respect to s is the linear and bounded functional Js(s̃) : H×Uad → R, such that in
each point τ = (%, ŵ, ϑ1, ϑ2, ĝ1, ĝ2) ∈ H× Uad is defined by:

Js(s̃)τ = (ũ− ud,%) + (θ̃1 − θ̃2, ϑ1 − ϑ2)Γ0 + β1(g̃1, ĝ1)Γ1 + β2(g̃2, ĝ2)Γ0 .

Lemma 4.2. The operator F is Fréchet differentiable with respect to s = (z, g) ∈ H×Uad.
Moreover, at the arbitrary point s̃ = (z̃, g̃) ∈ H × Uad the Fréchet derivative of F with
respect to s is the linear and bounded operator Fs(s̃) : H × Uad → Y, such that in each
point τ = (%, ŵ, ϑ1, ϑ2, ĝ1, ĝ2) ∈ H× Uad is defined by:

〈F1s(s̃)τ ,ϕ〉V′f = ν1(∇%,∇ϕ) + (ũ · ∇%,ϕ) + (% · ∇ũ,ϕ) + α(Gϑ1,ϕ)− 2νr(rotŵ,ϕ),

〈F2s(s̃)τ , ψ〉H−1 = ν2(∇ŵ,∇ψ) + (ũ · ∇ŵ, ψ) + (% · ∇w̃, ψ) + 4νr(ŵ, ψ)− 2νr(rot%, ψ),

〈F3s(s̃)τ , φ〉W ′1 = κ1(∇ϑ1,∇φ) + (ũ · ∇ϑ1, φ) + (% · ∇θ̃1, φ)− (ĝ2, φ)Γ0 ,

〈F4s(s̃)τ , ξ〉W ′2 = κ2(∇ϑ2,∇ξ) + (ĝ2, ξ)Γ0 ,

F5s(s̃)τ = %|Γ0∪Γ1
−B(ĝ1), F6s(s̃)τ = ϑ1|Γ1

, F7s(s̃)τ = ϑ2|Γ2
,

where B : H
1/2
00 (Γ1)→ H1/2(∂Ωf ) is a linear and bounded operator defined by B(ĝ1) = ĝ1

on Γ1 and B(ĝ1) = 0 on Γ0.

As in [1] to guarantee the existence of Lagrange multipliers, we establish a condition
for a pair (z, g) ∈ H× Uad to satisfy the regular point condition.

Definition 4.1. ( [5], p. 50) Let s̃ = (z̃, g̃) ∈ H×Uad be a optimal solution of the problem
(20). It is said that s̃ satisfy the regular point condition if Fs(z̃, g̃)(H× C(ḡ)) = Y, where
C(g̃) = C(g̃1)× C(ḡ2) = {(γ1(g1 − g̃1), γ2(g2 − g̃2)), γ1 ≥ 0, γ2 ≥ 0, (g1, g2) ∈ Uad}.
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Denoting z̃ = (ũ, w̃, θ̃1, θ̃2), g̃ = (g̃1, g̃2), we establish the following result.

Lemma 4.3. Let s̃ = (z̃, g̃) ∈ Sad be a solution of the problem (20). If ν1, ν2 and κ1 are
large enough such that

δ1 = min{ν1 − αC‖G‖∞ − 2Cνr, ν2 − 2Cνr, κ1 − αC‖G‖∞, κ2} > 2C‖z̃‖H, (24)

with C a positive constant depending only on Ω, then s̃ satisfies the regular point condition.

Proof. The steps of the proof are similar to those for the Navier - Stokes equations given
in [1].

About the existence of Lagrange multipliers we have the following result.

Theorem 4.1. Let s̃ = (z̃, g̃) be a local optimal solution for the problem (20) with ν1, ν2

and κ1 satisfying (24). Then, there exist Lagrange multipliers

λ = (λ1, λ2, λ3, λ4,λ5, λ6, λ7) ∈ Y′ = X×H
−1/2
00 (∂Ωf )×H−1/2

0 (Γ1)×H−1/2
0 (Γ2)

such that for all τ = (%, ŵ, ϑ1, ϑ2, ĝ1, ĝ2) ∈ H× C(g̃1)× C(g̃2),

(ũ− ud,%) + (θ̃1 − θ̃2, ϑ1)Γ0 + (θ̃2 − θ̃1, ϑ2)Γ0 + β1〈g̃1, ĝ1〉Γ1 + β2(g̃2, ĝ2)Γ0

−ν1(∇%,∇λ1)− (ũ · ∇%,λ1)− (% · ∇ũ,λ1)− α(Gϑ1,λ1) + 2νr(rotŵ,λ1)

−ν2(∇ŵ,∇λ2)− (ũ · ∇ŵ, λ2)− (% · ∇w̃, λ2)− 4νr(ŵ, λ2) + 2νr(rot%, λ2)

−κ1(∇ϑ1,∇λ3)− (ũ · ∇ϑ1, λ3)− (% · ∇θ̃1, λ3) + 〈ĝ2, λ3〉Γ0 − κ2(∇ϑ2,∇λ4)

−〈ĝ2, λ4〉Γ0 − 〈λλλ5,%−B(ĝ1)〉Γ0∪Γ1 − 〈λ6, ϑ1〉Γ1 − 〈λ7, ϑ2〉Γ2 ≥ 0.

Proof. From Lemma 4.3, s̃ satisfies the regular point condition, then applying the Theorem
3.1 given in [5], p. 57, there exist Lagrange multipliers λ = (λ1, λ2, λ3, λ4,λ5, λ6, λ7) ∈ Y′
such that

Ls(s̃,λ)τ ≥ 0 ∀τ ∈ H× C(g̃1)× C(g̃2),

where L is the the Lagrange functional defined by L(s̃,λ) = J(s̃)− 〈λ,F(s̃)〉Y′ .
Therefore, taking into account the Lemma 4.1 and Lemma 4.2 the result is followed.

From Theorem 4.1 we can derive the following optimality system:
State equations

−ν1∆ũ+ ũ · ∇ũ+ αGθ̃1 − 2νrrotw̃ = f in V′f ,

−ν2∆w̃ + ũ · ∇w̃ + 4νrw̃ − 2νrrotũ = g in H−1(Ωf ),

divũ = 0 in Ωf ,

−κ1∆θ̃1 + ũ · ∇θ̃1 = h1 in W ′1,

−κ2∆θ̃2 = h2 in W ′2,

ũ = g1, w̃ = 0, θ̃1 = η1 on Γ1,

κ1
∂θ̃1

∂n1
= g̃2, κ2

∂θ̃2

∂n2
= −g̃2, ũ = 0, w̃ = 0 on Γ0,

θ̃2 = η2 on Γ2.
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Adjoint equations

ν1∆λ1 + ũ · ∇λ1 +∇Tλ1 · ũ+∇Tλ2 · w̃ +∇Tλ3 · θ̃1 + 2νrrotλ2 = ud − ũ in (H1
σ)′,

ν2∆λ2 + ũ · ∇λ2 − 4νrλ2 + 2νrrotλ1 = 0 in H−1(Ωf ),

κ1∆λ3 − αGλ1 + ũ · ∇λ3 = 0 in (H1(Ωf ))′,

κ2∆λ4 = 0 in (H1(Ωs))
′,

divλ1 = 0 in Ωf ,

ν1
∂λ1

∂n1
+ λ5 = 0 on Γ0 ∪ Γ1,

κ1
∂λ3

∂n1
= θ̃1 − θ̃2, κ2

∂λ4

∂n2
= θ̃2 − θ̃1 on Γ0,

λ6 = 0 on Γ1, λ7 = 0 on Γ2.

Optimality conditions

〈β1g̃1 + λ5, g1 − g̃1〉Γ1 ≥ 0, 〈β2g̃2 + λ3 − λ4, g2 − g̃2〉Γ0 ≥ 0 ∀(g1, g2) ∈ Uad.

5 Conclusions

For viscosities and thermic conductivity coefficients large enough of the fluids, we
proved existence and uniqueness of weak solutions for the system (1)-(9). In order to min-
imize the temperature difference in the solid-liquid interface of the domain, is established
a control problem associated with the weak solutions of the system (1)-(9), considering
as control parameters a function defined on one part of the boundary of the fluid region
and another defined on the interface of the solid-fluid region. For the control problem
is proved the existence of solution and an optimality system is obtained by using the
Lagrange multipliers method.
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