Bifurcações de Equilíbrio de Fronteira no Controle de um Conversor Bidirecional Conectado a uma Microrede CC

Daniel J. Pagano, Rony Cristiano

Depto de Automação e Sistemas, DAS, UFSC Campus Trindade 88040-900, Florianópolis, SC E-mail: daniel.pagano@ufsc.br, rony.cristiano@ufsc.br

Resumo: As microredes cc são uma opção para novas demandas por qualidade de energia e integração de fontes renováveis no sistema elétrico. Numa microrede em modo ilhado, o conversor bidirecional cc-cc (DBC) tem o papel de controlar o balanço de potência entre geração e demanda de carga, utilizando a bateria para drenar ou injetar potência na rede. O conversor bidirecional com controle por modos deslizantes (SMC) é modelado como um sistema dinâmico DPWS. Esta classe de sistemas exibe bifurcações típicas, denominadas bifurcações induzidas pela descontinuidade (DIBs), como por exemplo a Bifurcação do Equilíbrio de Fronteira (BEBs), que é foco de estudo deste trabalho.

Palavras-chave: Microrede CC, conversor bidirecional, sistemas dinâmicos DPWS, controle por modos deslizantes, bifurcações do equilíbrio de fronteira.

1 Introdução

Microredes (MRs) são sistemas de distribuição de energia de corrente alternada (ca) ou corrente contínua (cc) compostos por células solares fotovoltaicas (PV), geradores eólicos, células de combustível e baterias. Em destaque, as MRs cc são uma opção para novas demandas por qualidade de energia e integração de fontes renováveis no sistema elétrico [6].

Figura 1: Modelo de uma Microrrede CC operando em modo ilhado.

Na dinâmica da MR cc, conversores no ponto de carga são modelados como *Constant Power Loads*-CPLs (P_L) e cargas diretamente conectadas ao barramento como cargas resistivas (R). As fontes (solar, eólica, etc.) conectadas ao barramento cc, são modeladas como fontes de potência (P_S) e a bateria é considerada uma fonte de tensão cc ideal (V_{in}). A MR no modo ilhado e o seu modelo equivalente estão ilustrados na Figura 1. A potência gerada e a consumida pela CPL podem ser modeladas como $P = P_S + P_L$, resultando no modelo simplificado ilustrado na Figura 2. Assim, o conversor bidirecional (DBC) tem o papel de controlar o balanço de potência entre geração e demanda de carga, utilizando a bateria para drenar ou injetar potência na rede.

Figura 2: Modelo simplificado de uma Microrrede CC operando em modo ilhado.

Os conversores de potência são modelados matematicamente por sistemas dinâmicos DPWS (*Discontinuous Piece-Wise Smooth*), na literatura conhecidos como Sistemas de Filippov [4]. O correspondente modelo matemático é um conjunto de equações diferenciais ordinárias, caracterizado por algumas descontinuidades no próprio campo vetorial. Estas descontinuidades aparecem apenas em um pequeno subconjunto do espaço de estados e geralmente tal subconjunto é uma variedade suave genericamente transversal ao campo vetorial. Esta classe de sistemas pode apresentar órbitas deslizantes que são confinadas à superfície de comutação.

Sistemas dinâmicos DPWS exibem uma nova classe de bifurcações, denominadas bifurcações induzidas pela descontinuidade (DIBs, *Discontinuity Induced Bifurcations*), pois são sistemas de natureza descontínua [2]. Um exemplo é a Bifurcação do Equilíbrio de Fronteira (BEBs, *Boundary Equilibrium Bifurcations*) onde, sob variação de parâmetros, é observado uma colisão de um ponto de equilíbrio com a superfície de comutação [3].

Neste trabalho, aplica-se o controle por modos deslizantes (SMC) com filtro Washout ao conversor boost bidirecional conectado numa bateria para regular a tensão em uma Microrede cc em modo ilhado, com o objetivo de identificar a ocorrência das BEBs. Do ponto de vista de controle, o estudo das BEBs se faz necessário pois, mesmo garantindo estabilidade do ponto de equilíbrio, uma perturbação de carga pode levar este ponto a desaparecer, transformando-o num equilíbrio virtual. Na seção (2) é apresentado algumas das propriedades dos sistemas dinâmicos DPWS, defini-se os tipos de equilíbrios, as características e classificação das BEBs. Na seção (3), a partir do sistema normalizado do conversor boost bidirecional, defini-se a estratégia de controle e faz-se um estudo dos equilíbrios para identificar e comprovar a ocorrência das BEBs.

2 Sistemas dinâmicos DPWS e as BEBs

Suponha que são dados dois campos vetoriais suaves \mathbf{F}^{\pm} : $\mathbb{R}^n \to \mathbb{R}^n$ e a função escalar $h: \mathbb{R}^n \to \mathbb{R}$, tal que a variedade de comutação $\Sigma = \{\mathbf{x} \in \mathbb{R}^n, h(\mathbf{x}) = 0\}$ é uma superfície suave, com gradiente de h diferente de zero. Em seguida, define-se as duas regiões abertas $R^- = \{\mathbf{x} \in \mathbb{R}^n : h(\mathbf{x}) < 0\}$ e $R^+ = \{\mathbf{x} \in \mathbb{R}^n : h(\mathbf{x}) > 0\}$, e o sistema dinâmico DPWS

$$\dot{\mathbf{x}} = \begin{cases} \mathbf{F}^{-}(\mathbf{x},\mu), & \text{se } \mathbf{x} \in R^{-} \\ \mathbf{F}^{+}(\mathbf{x},\mu), & \text{se } \mathbf{x} \in R^{+}. \end{cases}$$
(1)

dependente do parâmetro $\mu \in \mathbb{R}$.

A superfície de comutação Σ pode ser particionada em três diferentes regiões: uma onde \mathbf{F}^{\pm} apontam para superfície em ambos os lados, chamada região de deslizamento atrativo Σ_{as} ; outra onde \mathbf{F}^{\pm} apontam para fora da superfície em ambos os lados, chamada região de deslizamento repulsivo Σ_{rs} ; e outra onde um dos campos vetoriais aponta para superfície e o outro aponta para fora, chamada região de cruzamento Σ_c .

No conjunto deslizante, dado pela união $\Sigma_{as} \cup \Sigma_{rs}$, a dinâmica é descrita pelo campo vetorial deslizante calculado a partir de uma combinação dos campos vetoriais originais [4], da forma,

$$\mathbf{F}_{s}(\mathbf{x},\mu) = (1-\lambda)\mathbf{F}^{-}(\mathbf{x},\mu) + \lambda\mathbf{F}^{+}(\mathbf{x},\mu).$$
(2)

Para cada $\mathbf{x} \in \Sigma_{as} \cup \Sigma_{rs}$, o valor de λ é selecionado tal que $h_{\mathbf{x}} \cdot \mathbf{F}_{s} = 0$ ($h_{\mathbf{x}}$ é o gradiente de h), ou seja,

$$\lambda = \lambda(\mathbf{x}, \mu) = \frac{h_{\mathbf{x}} \cdot \mathbf{F}^{-}(\mathbf{x}, \mu)}{h_{\mathbf{x}} \cdot (\mathbf{F}^{-}(\mathbf{x}, \mu) - \mathbf{F}^{+}(\mathbf{x}, \mu))},$$
(3)

desde que o denominador acima seja diferente de zero. Então, $\lambda \in (0,1) \quad \forall \mathbf{x} \in \Sigma_{as} \cup \Sigma_{rs}$.

O sistema dinâmico DPWS (1) possui os equilíbrios de cada campo vetorial \mathbf{F}^{\pm} e também os equilíbrios do campo vetorial deslizante \mathbf{F}_s , mas é importante distinguir entre equilíbrios reais ou virtuais. Segue as definições:

Definição 2.1 Seja $\bar{\mathbf{x}} \in \mathbb{R}^n$, dependente ou não do parâmetro μ , um ponto de equilíbrio do campo vetorial \mathbf{F}^- (\mathbf{F}^+), isto é, $\mathbf{F}^-(\bar{\mathbf{x}}, \mu) = \mathbf{0}$ ($\mathbf{F}^+(\bar{\mathbf{x}}, \mu) = \mathbf{0}$). Este ponto é um equilíbrio real de \mathbf{F}^- se $h(\bar{\mathbf{x}}) < 0$ ($h(\bar{\mathbf{x}}) > 0$); ou um equilíbrio virtual se $h(\bar{\mathbf{x}}) > 0$ ($h(\bar{\mathbf{x}}) < 0$); ou um equilíbrio virtual se $h(\bar{\mathbf{x}}) > 0$ ($h(\bar{\mathbf{x}}) < 0$); ou um

Definição 2.2 Um ponto $\tilde{\mathbf{x}} \in \mathbb{R}^n$, dependente ou não do parâmetro μ , é um **pseudo-equilíbrio** do sistema dinâmico DPWS (1) se $\tilde{\mathbf{x}} \in \Sigma$ e é um ponto de equilíbrio do campo vetorial deslizante \mathbf{F}_s dado em (2), ou seja,

$$(1 - \lambda)\mathbf{F}^{-}(\tilde{\mathbf{x}}, \mu) + \lambda \mathbf{F}^{+}(\tilde{\mathbf{x}}, \mu) = \mathbf{0}$$
(4)

$$h(\tilde{\mathbf{x}}) = 0 \tag{5}$$

Além disso, $\tilde{\mathbf{x}}$ é um pseudo-equilíbrio **real** quando $\lambda \in (0,1)$, e **virtual** quando $\lambda < 0$ ou $\lambda > 1$.

O equilíbrio de fronteira é um ponto crítico de mudança entre equilíbrio real e virtual. Esta mudança topológica de equilíbrio real para virtual (ou vice-versa) é influenciada pela variação do parâmetro μ , e caracteriza uma **Bifurcação do Equilíbrio de Fronteira** (BEB).

Suponha que no valor crítico $\mu = 0$, o campo vetorial \mathbf{F}^- possui um ponto de equilíbrio de fronteira. A BEB ocorre de duas formas: uma denominada **Persistência**, ocorre quando em $\mu < 0$ o equilíbrio de \mathbf{F}^- é real e o pseudo-equilíbrio é virtual, para $\mu = 0$ eles colidem formando o equilíbrio de fronteira, e para $\mu > 0$ o equilíbrio torna-se virtual e o pseudo-equilíbrio tornase real. A outra, denominada **Dobra não Suave**, ocorre quando em $\mu < 0$ o equilíbrio e o pseudo-equilíbrio são reais, para $\mu = 0$ eles colidem, e para $\mu > 0$ ambos tornam-se virtuais [3]. Note que, no caso da Persistência o equilíbrio do campo \mathbf{F}^- e o equilíbrio do campo deslizante \mathbf{F}_s (pseudo-equilíbrio) não coexistem para $\mu \neq 0$, e no caso da Dobra não suave eles podem coexistir para $\mu < 0$ (ou $\mu > 0$).

3 Estudo das BEBs no Controle do Conversor Bidirecional

Para o estudo das BEBs, considera-se o modelo do conversor boost bidirecional, mostrado na Figura 2, na forma normalizada como em [6], dada por

$$\dot{x} = 1 - bx - uy \tag{6}$$

$$\dot{y} = ux - ay - \frac{d}{y},\tag{7}$$

em que $u \in \{0,1\}$ é a ação de controle, $a \in \mathbb{R}_+$, $b \in \mathbb{R}_+$ e $d \in \mathbb{R}$ são parâmetros, e $x \in \mathbb{R}$ e $y \in \mathbb{R}^+ - \{0\}$ as variáveis de estados do sistema.

Os parâmetros a e d representam as cargas resistiva e de potência normalizadas do conversor. Estes parâmetros variam com a demanda de potência e com a disponibilidade de fontes da MR, gerando consequentemente mudanças na dinâmica do sistema. Para superar este problema, adota-se uma estratégia de controle SMC com filtro *high-pass* denominado Washout. Este filtro, juntamente com uma escolha apropriada da superfície de comutação, eliminam a dependência do ponto de operação de interesse em relação aos parâmetros a e d [1].

O filtro Washout introduz uma nova variável ao sistema, com equação dinâmica $\dot{z} = \omega(x-z)$, e $\omega > 0$. No equilíbrio, x e z são iguais, assim (x-z) trabalha como uma medida do erro que alimenta o controlador SMC apenas durante o transitório. Em seguida, define-se uma estratégia de controle por modos deslizantes baseada na ação de controle $u = \frac{1}{2}(1 + \text{sign}[h(\mathbf{x})])$ com $\mathbf{x} = (x, y, z) \in \mathbb{R}^3$, onde $h : \mathbb{R}^3 \to \mathbb{R}$ é uma função escalar da forma

$$h(\mathbf{x}) = y - y_r + k(x - z),\tag{8}$$

com k > 0 (parâmetro real de controle) e $y_r > 1$ (tensão normalizada de referência). Assim, representa-se a superfície de comutação pelo conjunto $\Sigma = \{ \mathbf{x} \in \mathbb{R}^3 : h(\mathbf{x}) = 0 \}.$

O sistema de controle em questão pode ser representado como um sistema dinâmico DPWS

$$\dot{\mathbf{x}} = \begin{cases} \mathbf{F}^{-}(\mathbf{x}, d), & \text{se } h(\mathbf{x}) < 0\\ \mathbf{F}^{+}(\mathbf{x}, d), & \text{se } h(\mathbf{x}) > 0 \end{cases},$$
(9)

com os campos vetoriais

$$\mathbf{F}^{-}(\mathbf{x},d) = \begin{bmatrix} 1-bx\\ -ay-\frac{d}{y}\\ \omega(x-z) \end{bmatrix} \quad \mathbf{F}^{+}(\mathbf{x},d) = \begin{bmatrix} 1-bx-y\\ x-ay-\frac{d}{y}\\ \omega(x-z) \end{bmatrix},$$

dependentes do parâmetro $d \in \mathbb{R}$. Como y > 0, \mathbf{F}^- possui apenas un ponto de equilíbrio: $\bar{\mathbf{x}}^-(d) = \left(\frac{1}{b}, \sqrt{\frac{-d}{a}}, \frac{1}{b}\right)$, definido para $d \leq 0$. O campo \mathbf{F}^+ possui dois pontos de equilíbrio: $\bar{\mathbf{x}}_1^+(d) = (\bar{x}_1, \bar{y}_1, \bar{x}_1)$ definido para $0 < d \leq d_{SN}$, e $\bar{\mathbf{x}}_2^+(d) = (\bar{x}_2, \bar{y}_2, \bar{x}_2)$ para $d \leq d_{SN}$; com

$$\bar{x}_{1,2} = \frac{2(a+d)}{1+2ab \mp \sqrt{1-d/d_{SN}}}, \quad \bar{y}_{1,2} = \frac{1 \mp \sqrt{1-d/d_{SN}}}{2(1+ab)}$$
(10)

е

$$d_{SN} = \frac{1}{4b(1+ab)}.$$
 (11)

Seguindo a definição (2.2), para determinar os pontos de pseudo-equilíbrio resolve-se o sistema de equações (4)-(5), em termos de (\mathbf{x}, λ) , obtendo $(\tilde{\mathbf{x}}_+(d), \tilde{\lambda}_-(d))$ e $(\tilde{\mathbf{x}}_-(d), \tilde{\lambda}_+(d))$ com

$$\tilde{\mathbf{x}}_{\pm}(d) = (\tilde{x}_{\pm}, y_r, \tilde{x}_{\pm}), \text{ em que } \tilde{x}_{\pm} = \frac{1 \pm \sqrt{1 - 4b(d + ay_r^2)}}{2b}$$
 (12)

$$\tilde{\lambda}_{\mp}(d) = \frac{1 \mp \sqrt{1 - 4b(d + ay_r^2)}}{2y_r},$$
(13)

para $d < d_{SN}^s$ com

$$d_{SN}^s = \frac{1 - 4aby_r^2}{4b}.$$
 (14)

Para identificar a ocorrência da BEB, considere primeiro uma análise no campo vetorial $\mathbf{F}^$ e depois no campo vetorial \mathbf{F}^+ . O equilíbrio do campo vetorial \mathbf{F}^- é o ponto $\bar{\mathbf{x}}^-(d)$, cuja posição no espaço de estados depende do parâmetro d. A trajetória descrita por este ponto é uma curva suave do \mathbb{R}^3 definida para $d \in \mathbb{R}^+$, que cruza transversalmente a superfície de comutação Σ no ponto $\bar{\mathbf{x}}^-(d_{BEB^-}) = (1/b, y_r, 1/b)$ quando d assume o valor crítico

$$d = d_{BEB^-} = -ay_r^2, (15)$$

pois, $h(\bar{\mathbf{x}}^-(d_{BEB^-})) = 0$ e $h'(\bar{\mathbf{x}}^-(d_{BEB^-})) = -\frac{1}{2ay_r} < 0$. A derivada negativa indica que $\bar{\mathbf{x}}^-(d)$ é um equilíbrio virtual para $d < d_{BEB^-}$, e real para $d > d_{BEB^-}$ (d suficientemente próximo à d_{BEB^-}). No valor crítico $d = d_{BEB^-}$, o equilíbrio $\bar{\mathbf{x}}^-(d)$ colide com o pseudo-equilíbrio $\tilde{\mathbf{x}}_+(d)$, formando o equilíbrio de fronteira. Este é um ponto sobre a linha limite das regiões de deslizamento atrativo/repulsivo e cruzamento, pois, $\tilde{\lambda}_-(d_{BEB^-}) = 0$. O pseudo-equilíbrio $\tilde{\mathbf{x}}_+(d)$ cruza esta linha limite de forma transversal, pois $\tilde{\lambda}'_-(d_{BEB^-}) = b/y_r > 0$. A derivada positiva indica que $\tilde{\mathbf{x}}_+(d)$ é um pseudo-equilíbrio virtual para $d < d_{BEB^-}$, e real para $d > d_{BEB^-}$. Então, quando $d = d_{BEB^-}$ ocorre uma **BEB** do tipo **Dobra não Suave** (*Nonsmooth fold*). Na figura 3(a) a curva de cor roxa, com equação dada em (15), indica esta bifurcação no plano (y_r, d).

No campo vetorial \mathbf{F}^+ o equilíbrio $\bar{\mathbf{x}}_1^+(d)$ é sempre virtual, pois $y_r > 1$. O outro equilíbrio, $\bar{\mathbf{x}}_2^+(d)$, descreve uma curva suave no \mathbb{R}^3 que cruza transversalmente a superfície de comutação Σ no ponto $\bar{\mathbf{x}}_2^+(d_{BEB^+}) = \left(\frac{1-y_r}{b}, y_r, \frac{1-y_r}{b}\right)$ quando d assume o valor crítico

$$d = d_{BEB^+} = \frac{y_r - (1+ab)y_r^2}{b},$$
(16)

pois, $h(\bar{\mathbf{x}}_{2}^{+}(d_{BEB^{+}})) = 0 e h'(\bar{\mathbf{x}}_{2}^{+}(d_{BEB^{+}})) = -\frac{b}{|2y_{r}(1+ab)-1|} < 0$. A derivada negativa indica que $\bar{\mathbf{x}}_{2}^{+}(d)$ é um equilíbrio real para $d < d_{BEB^{+}}$ e virtual para $d > d_{BEB^{+}}$ (d suficientemente próximo à $d_{BEB^{+}}$). No valor crítico $d = d_{BEB^{+}}, \bar{\mathbf{x}}_{2}^{+}(d)$ colide com o pseudo-equilíbrio $\tilde{\mathbf{x}}_{-}(d)$ formando o equilíbrio de fronteira. Este é um ponto sobre a linha limite das regiões de deslizamento atrativo/repulsivo e cruzamento, pois, $\tilde{\lambda}_{+}(d_{BEB^{+}}) = 1$. O pseudo-equilíbrio $\tilde{\mathbf{x}}_{-}(d)$ cruza esta linha limite de forma transversal, pois, $\tilde{\lambda}_{+}'(d_{BEB^{+}}) = -\frac{b}{y_{r}|2y_{r}-1|} < 0$. A derivada negativa indica que $\tilde{\mathbf{x}}_{-}(d)$ é um pseudo-equilíbrio virtual para $d < d_{BEB^{+}}$ e real para $d > d_{BEB^{+}}$. Então, no valor crítico $d = d_{BEB^{+}}$ ocorre uma **BEB** do tipo **Persistência** (*Persistence*). Na figura 3(a) a curva de cor azul, com equação dada em (16), indica esta bifurcação no plano (y_{r}, d).

As conclusões obtidas sobre as BEBs são válidas apenas para $y_r > 1$, característica do conversor boost. No entanto, supondo $y_r = 1/2$, quando $d = d_{BEB^+}$ no ponto de equilíbrio de fronteira ocorre uma tripla colisão, envolvendo os equilíbrios $\bar{\mathbf{x}}_2^+$ e $\tilde{\mathbf{x}}_{\pm}$. Neste caso, o equilíbrio de fronteira é um ponto GBE [5], *Generalized Boundary Equilibrium*. Esta situação degenerada é uma bifurcação de codimensão 2, que separa os dois cenários: Persistência e Dobra não suave.

Na Figura 3 é mostrado um plano de bifurcações das BEBs, e bifurcações Sela-Nó (SN_1 em \mathbf{F}^+ , linha verde; e SN_2 em \mathbf{F}_s , linha vermelha; de equações dadas em (11) e (14).). Também, resultados de simulação do sistema dinâmico (9), considerando b = 0.06, $\omega = 0.6$, $y_r = 1.2$, k = 1, a = 0.3 e $d \in \{-5, -4.432, -4\}$; onde é visualizada a ocorrência da BEB do tipo Persistência.

4 Conclusões

Neste trabalho foram abordadas algumas das propriedades de sistemas dinâmicos DPWS como, o movimento deslizante, pseudo-equilíbrio, equilíbrio de fronteira, além da caracterização das BEBs e da definição dos dois tipos: Persistência e Dobra não Suave. Com o objetivo de identificar e comprovar a ocorrência das BEBs em sistemas reais, foi considerado uma aplicação ligada ao controle de um conversor Boost Bidirecional conectado a uma bateria em uma Microrede cc quando em modo ilhado. Para o processo de controle foi utilizado um SMC introduzindo o filtro Washout, responsável por manter o ponto de operação de interesse após uma perturbação de carga. Os resultados obtidos neste trabalho comprovam a ocorrência das BEBs no sistema de controle proposto. Este fato é de extrema importância, pois uma perturbação de carga pode instabilizar o sistema ou mudar o ponto de operação, sendo que neste caso o filtro Washout é ineficiente para colocar o sistema de volta ao ponto de operação de interesse.

(a) Plano (y_r, d) de bifurcações.

(b) Região 6, $d = -5 < d_{BEB^+}$: $\bar{\mathbf{x}}_2^+$ (ponto vermelho) real e $\tilde{\mathbf{x}}_-$ (ponto verde) virtual.

(c) Sobre a curva de bifurcação BEB⁺, d = -4.432 = (d) Região 5, $d = -4 > d_{BEB^+}$: $\bar{\mathbf{x}}_2^+$ virtual e $\tilde{\mathbf{x}}_-$ real. d_{BEB^+} : equilíbrio de fronteira.

Referências

- R. Cristiano. Bifurcações em Sistemas Dinâmicos DPWS com Aplicações em Eletrônica de Potência. Dissertação de mestrado. PGEAS, UFSC. Em andamento, previsão, Outubro de 2013. Orientador: Daniel J. Pagano.
- [2] M. di Bernardo, A. Nordmark and G. Olivar, (2008b). Discontinuity-induced bifurcations of equilibria in piecewise-smooth dynamical systems; Physica D 237, 119-136.
- [3] M. di Bernardo, D. J. Pagano and E. Ponce. Nonhyperbolic boundary equilibrium bifurcations in planar Filippov systems: A case study approach. Int. J. Bifurcat. Chaos, vol. 18, pp. 1377-1392, 2008.
- [4] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Dordrecht, The Netherlands: Kluwer Academic, 1988.
- [5] F. D. Rossa and F. Dercole. Generic and generalized boundary operating points in piecewiselinear (discontinuous) control systems; in 51st IEEE Conference on Decision and Control (accepted), 2012.
- [6] A. P. N. Tahim, D. J. Pagano e E. Ponce. Nonlinear Control of Boost Bidirectional Converters in Stand-alone dc Microgrids. 51st IEEE Conference on Decision and Control - CDC. Maui, Hawaii, USA; 2012.